17 research outputs found

    Rutin administration attenuates myocardial dysfunction in diabetic rats

    Full text link
    Oxidative stress plays a major role in diabetic cardiomyopathy pathogenesis. Anti-oxidant therapy has been investigated in preventing or treating several diabetic complications. However, anti-oxidant action on diabetic-induced cardiac remodeling is not completely clear. This study evaluated the effects of rutin, a flavonoid, on cardiac and myocardial function in diabetic rats. Wistar rats were assigned into control (C, n = 14); control-rutin (C-R, n = 14); diabetes mellitus (DM, n = 16); and DM-rutin (DM-R, n = 16) groups. Seven days after inducing diabetes (streptozotocin, 60 mg/kg, i.p.), rutin was injected intraperitoneally once a week (50 mg/kg) for 7 weeks. Echocardiogram was performed and myocardial function assessed in left ventricular (LV) papillary muscles. Serum insulin concentration was measured by ELISA. One-way ANOVA and Tukey's post hoc test. Glycemia was higher in DM than DM-R and C and in DM-R than C-R. Insulin concentration was lower in diabetic groups than controls (C 2.45 ± 0.67; C-R 2.09 ± 0.52; DM 0.59 ± 0.18; DM-R 0.82 ± 0.21 ng/mL). Echocardiogram showed no differences between C-R and C. DM had increased LV systolic diameter compared to C, and increased left atrium diameter/body weight (BW) ratio and LV mass/BW ratio compared to C and DM-R. Septal wall thickness, LV diastolic diameter/BW ratio, and relative wall thickness were lower in DM-R than DM. Fractional shortening and posterior wall shortening velocity were lower in DM than C and DM-R. In papillary muscle preparation, DM and DM-R presented higher time to peak tension and time from peak tension to 50% relaxation than controls; time to peak tension was lower in DM-R than DM. Under 0.625 and 1.25 mM extracellular calcium concentrations, DM had higher developed tension than C. Rutin attenuates cardiac remodeling and left ventricular and myocardial dysfunction caused by streptozotocin-induced diabetes mellitus.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Pró-Reitoria de Pesquisa da UNESP (PROPe)Departamento de Medicina Interna, Faculdade de Medicina de Botucatu (FMB), Universidade Estadual Paulista (UNESP), Botucatu, SP, BrasilDepartamento de Química e Bioquímica, Instituto de Biociências de Botucatu (IBB), Universidade Estadual Paulista (UNESP), Botucatu, SP, BrasilDepartamento de Clínica Médica, Faculdade de Medicina de Botucatu (FMB), Universidade Estadual Paulista (UNESP), Botucatu, SP, BrasilUniversidade Estadual Paulista, Departamento de Clínica Médica, Faculdade de Medicina de BotucatuUniversidade Estadual Paulista, Departamento de Química e Bioquímica, Instituto de Biociências de BotucatuCNPq: 306845/2012-1CNPq: 306857/2012-0)FAPESP: 2009/54506-

    Naringin Alleviates Diabetic Kidney Disease through Inhibiting Oxidative Stress and Inflammatory Reaction

    No full text
    Naringin, a flavanone glycoside extracted from Citrus grandis Osbeck, has a wide range of pharmacological effects. In the present study we aimed at demonstrating the protective effect of naringin against diabetic kidney disease (DKD) and elucidating its possible molecular mechanism underlying. The beneficial effect of naringin was assessed in rats with streptozotocin (STZ)-induced diabetes and high glucose-induced HBZY-1 cells. According to our results, first we found that naringin relieved kidney injury, improved renal function and inhibited collagen formation and renal interstitial fibrosis. Second, we confirmed that naringin restrained oxidative stress by activating Nrf2 antioxidant pathway. Moreover, the results suggested that naringin significantly resisted inflammatory reaction by inhibiting NF- κ B signaling pathway. Taken together, our results demonstrate that naringin effectively alleviates DKD, which provide theoretical basis for naringin clinically used to treatment of DKD

    Potential Applications of Gliclazide in Treating Type 1 Diabetes Mellitus: Formulation with Bile Acids and Probiotics

    No full text
    © 2017 Springer International Publishing AG A major advancement in therapy of type 1 diabetes mellitus (T1DM) is the discovery of new treatment which avoids and even replaces the absolute requirement for injected insulin. The need for multiple drug therapy of comorbidities associated with T1DM increases demand for developing novel therapeutic alternatives with new mechanisms of actions. Compared to other sulphonylurea drugs used in the treatment of type 2 diabetes mellitus, gliclazide exhibits a pleiotropic action outside pancreatic ß cells, the so-called extrapancreatic effects, such as antiinflammatory and cellular protective effects, which might be beneficial in the treatment of T1DM. Results from in vivo experiments confirmed the positive effects of gliclazide in T1DM that are even more pronounced when combined with other hypoglycaemic agents such as probiotics and bile acids. Even though the exact mechanism of interaction at the molecular level is still unknown, there is a clear synergistic effect between gliclazide, bile acids and probiotics illustrated by the reduction of blood glucose levels and improvement of diabetic complications. Therefore, the manipulation of bile acid pool and intestinal microbiota composition in combination with old drug gliclazide could be a novel therapeutic approach for patients with T1DM
    corecore