36 research outputs found

    Human IgG1 Responses to Surface Localised Schistosoma mansoni Ly6 Family Members Drop following Praziquantel Treatment

    Get PDF
    The heptalaminate-covered, syncytial tegument is an important anatomical adaptation that enables schistosome parasites to maintain long-term, intravascular residence in definitive hosts. Investigation of the proteins present in this surface layer and the immune responses elicited by them during infection is crucial to our understanding of host/parasite interactions. Recent studies have revealed a number of novel tegumental surface proteins including three (SmCD59a, SmCD59b and Sm29) containing uPAR/Ly6 domains (renamed SmLy6A SmLy6B and SmLy6D in this study). While vaccination with SmLy6A (SmCD59a) and SmLy6D (Sm29) induces protective immunity in experimental models, human immunoglobulin responses to representative SmLy6 family members have yet to be thoroughly explored.Using a PSI-BLAST-based search, we present a comprehensive reanalysis of the Schistosoma mansoni Ly6 family (SmLy6A-K). Our examination extends the number of members to eleven (including three novel proteins) and provides strong evidence that the previously identified vaccine candidate Sm29 (renamed SmLy6D) is a unique double uPAR/Ly6 domain-containing representative. Presence of canonical cysteine residues, signal peptides and GPI-anchor sites strongly suggest that all SmLy6 proteins are cell surface-bound. To provide evidence that SmLy6 members are immunogenic in human populations, we report IgG1 (as well as IgG4 and IgE) responses against two surface-bound representatives (SmLy6A and SmLy6B) within a cohort of S. mansoni-infected Ugandan males before and after praziquantel treatment. While pre-treatment IgG1 prevalence for SmLy6A and SmLy6B differs amongst the studied population (7.4% and 25.3% of the cohort, respectively), these values are both higher than IgG1 prevalence (2.7%) for a sub-surface tegumental antigen, SmTAL1. Further, post-treatment IgG1 levels against surface-associated SmLy6A and SmLy6B significantly drop (p = 0.020 and p < 0.001, respectively) when compared to rising IgG1 levels against sub-surface SmTAL1.Collectively, these results expand the number of SmLy6 proteins found within S. mansoni and specifically demonstrate that surface-associated SmLy6A and SmLy6B elicit immunological responses during infection in endemic communities

    Final results on the 0νββ0νββ decay half-life limit of 100^{100}Mo from the CUPID-Mo experiment

    Get PDF
    The CUPID-Mo experiment to search for 0νββ\nu\beta\beta decay in 100^{100}Mo has been recently completed after about 1.5 years of operation at Laboratoire Souterrain de Modane (France). It served as a demonstrator for CUPID, a next generation 0νββ\nu\beta\beta decay experiment. CUPID-Mo was comprised of 20 enriched Li2_2100^{100}MoO4_4 scintillating calorimeters, each with a mass of \sim 0.2 kg, operated at \sim20 mK. We present here the final analysis with the full exposure of CUPID-Mo (100^{100}Mo exposure of 1.47 kg×\timesyr) used to search for lepton number violation via 0νββ\nu\beta\beta decay. We report on various analysis improvements since the previous result on a subset of data, reprocessing all data with these new techniques. We observe zero events in the region of interest and set a new limit on the 100^{100}Mo 0νββ\nu\beta\beta decay half-life of T^{0\nu}_{1/2} > 1.8 \times 10^{24} year (stat.+syst.) at 90% C.I. Under the light Majorana neutrino exchange mechanism this corresponds to an effective Majorana neutrino mass of \left < (0.28--0.49)0.49) eV, dependent upon the nuclear matrix element utilized

    The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects

    Get PDF
    International audienceCUPID-Mo is a bolometric experiment to search for neutrinoless double-beta decay (0νββ0\nu \beta \beta ) of 100Mo^{100}\hbox {Mo}. In this article, we detail the CUPID-Mo detector concept, assembly and installation in the Modane underground laboratory, providing results from the first datasets. The CUPID-Mo detector consists of an array of 20 100Mo^{100}\hbox {Mo}-enriched 0.2 kg Li2MoO4\hbox {Li}_2\hbox {MoO}_4 crystals operated as scintillating bolometers at 20 mK\sim 20\hbox { mK}. The Li2MoO4\hbox {Li}_2\hbox {MoO}_4 crystals are complemented by 20 thin Ge optical bolometers to reject α\alpha events by the simultaneous detection of heat and scintillation light. We observe a good detector uniformity and an excellent energy resolution of 5.3 keV (6.5 keV) FWHM at 2615 keV, in calibration (physics) data. Light collection ensures the rejection of α\alpha particles at a level much higher than 99.9% – with equally high acceptance for γ\gamma /β\beta events – in the region of interest for 100Mo0νββ^{100}\hbox {Mo}0\nu \beta \beta . We present limits on the crystals’ radiopurity: 3 μBq/kg\le 3~\mu \hbox {Bq/kg} of 226Ra^{226}\hbox {Ra} and 2 μBq/kg\le 2~\mu \hbox {Bq/kg} of 232Th^{232}\hbox {Th}. We discuss the science reach of CUPID-Mo, which can set the most stringent half-life limit on the 100Mo0νββ^{100}\hbox {Mo}0\nu \beta \beta decay in half-a-year’s livetime. The achieved results show that CUPID-Mo is a successful demonstrator of the technology developed by the LUMINEU project and subsequently selected for the CUPID experiment, a proposed follow-up of CUORE, the currently running first tonne-scale bolometric 0νββ0\nu \beta \beta experiment
    corecore