96 research outputs found

    ULEARN: Personalised Learner’s Profile Based On Dynamic Learning Style Questionnaire

    Get PDF
    The file attached to this record is the author's final peer reviewed version.E-Learning recommender system effectiveness re- lies upon their ability to recommend appropriate learning con- tents according to the learner learning style and preferences. An effective approach to handle the learner preferences is to build an efficient learner profile in order to gain adaptation and individualisation of the learning environment. It is usually necessary to know learning style and preferences of the learner on a domain before adapting the learning process and course content. This study focuses on identifying the learning styles of students in order to adapt the learning process and course content. ULEARN is an adaptive recommender learning system designed to provide learners with personalised learning environment such as course learning objects that match their adaptive profile. This paper presents the algorithm used in ULEARN to reduce dynamically the number of questions in Felder-Silverman learning style ques- tionnaire used to initialise the adaptive learner profile. Firstly, the questionnaire is restructured into four groups, one for each learning style dimension; and a study is carried out to determine the order in which questions will be asked in each dimension. Then an algorithm is built upon this ranking of questions to calculate dynamically the initial learning style of the user as they go through the questionnaire

    Determinant representations of scalar products for the open XXZ chain with non-diagonal boundary terms

    Full text link
    With the help of the F-basis provided by the Drinfeld twist or factorizing F-matrix for the open XXZ spin chain with non-diagonal boundary terms, we obtain the determinant representations of the scalar products of Bethe states of the model.Comment: Latex file, 28 pages, based on the talk given by W. -L. Yang at Statphys 24, Cairns, Australia, 19-23 July, 201

    The Conserved Candida albicans CA3427 Gene Product Defines a New Family of Proteins Exhibiting the Generic Periplasmic Binding Protein Structural Fold

    Get PDF
    Nosocomial diseases due to Candida albicans infections are in constant rise in hospitals, where they cause serious complications to already fragile intensive care patients. Antifungal drug resistance is fast becoming a serious issue due to the emergence of strains resistant to currently available antifungal agents. Thus the urgency to identify new potential protein targets, the function and structure of which may guide the development of new antifungal drugs. In this context, we initiated a comparative genomics study in search of promising protein coding genes among the most conserved ones in reference fungal genomes. The CA3427 gene was selected on the basis of its presence among pathogenic fungi contrasting with its absence in the non pathogenic Saccharomyces cerevisiae. We report the crystal 3D-structure of the Candida albicans CA3427 protein at 2.1 Å resolution. The combined analysis of its sequence and structure reveals a structural fold originally associated with periplasmic binding proteins. The CA3427 structure highlights a binding site located between the two protein domains, corresponding to a sequence segment conserved among fungi. Two crystal forms of CA3427 were found, suggesting that the presence or absence of a ligand at the proposed binding site might trigger a “Venus flytrap” motion, coupled to the previously described activity of bacterial periplasmic binding proteins. The conserved binding site defines a new subfamily of periplasmic binding proteins also found in many bacteria of the bacteroidetes division, in a choanoflagellate (a free-living unicellular and colonial flagellate eukaryote) and in a placozoan (the closest multicellular relative of animals). A phylogenetic analysis suggests that this gene family originated in bacteria before its horizontal transfer to an ancestral eukaryote prior to the radiation of fungi. It was then lost by the Saccharomycetales which include Saccharomyces cerevisiae

    Improved annotation with <i>de novo</i> transcriptome assembly in four social amoeba species

    Get PDF
    Background: Annotation of gene models and transcripts is a fundamental step in genome sequencing projects. Often this is performed with automated prediction pipelines, which can miss complex and atypical genes or transcripts. RNA sequencing (RNA-seq) data can aid the annotation with empirical data. Here we present de novo transcriptome assemblies generated from RNA-seq data in four Dictyostelid species: D. discoideum, P. pallidum, D. fasciculatum and D. lacteum. The assemblies were incorporated with existing gene models to determine corrections and improvement on a whole-genome scale. This is the first time this has been performed in these eukaryotic species. Results: An initial de novo transcriptome assembly was generated by Trinity for each species and then refined with Program to Assemble Spliced Alignments (PASA). The completeness and quality were assessed with the Benchmarking Universal Single-Copy Orthologs (BUSCO) and Transrate tools at each stage of the assemblies. The final datasets of 11,315-12,849 transcripts contained 5,610-7,712 updates and corrections to >50% of existing gene models including changes to hundreds or thousands of protein products. Putative novel genes are also identified and alternative splice isoforms were observed for the first time in P. pallidum, D. lacteum and D. fasciculatum. Conclusions: In taking a whole transcriptome approach to genome annotation with empirical data we have been able to enrich the annotations of four existing genome sequencing projects. In doing so we have identified updates to the majority of the gene annotations across all four species under study and found putative novel genes and transcripts which could be worthy for follow-up. The new transcriptome data we present here will be a valuable resource for genome curators in the Dictyostelia and we propose this effective methodology for use in other genome annotation projects

    Accessing a Hidden Conformation of the Maltose Binding Protein Using Accelerated Molecular Dynamics

    Get PDF
    Periplasmic binding proteins (PBPs) are a large family of molecular transporters that play a key role in nutrient uptake and chemotaxis in Gram-negative bacteria. All PBPs have characteristic two-domain architecture with a central interdomain ligand-binding cleft. Upon binding to their respective ligands, PBPs undergo a large conformational change that effectively closes the binding cleft. This conformational change is traditionally viewed as a ligand induced-fit process; however, the intrinsic dynamics of the protein may also be crucial for ligand recognition. Recent NMR paramagnetic relaxation enhancement (PRE) experiments have shown that the maltose binding protein (MBP) - a prototypical member of the PBP superfamily - exists in a rapidly exchanging (ns to µs regime) mixture comprising an open state (approx 95%), and a minor partially closed state (approx 5%). Here we describe accelerated MD simulations that provide a detailed picture of the transition between the open and partially closed states, and confirm the existence of a dynamical equilibrium between these two states in apo MBP. We find that a flexible part of the protein called the balancing interface motif (residues 175–184) is displaced during the transformation. Continuum electrostatic calculations indicate that the repacking of non-polar residues near the hinge region plays an important role in driving the conformational change. Oscillations between open and partially closed states create variations in the shape and size of the binding site. The study provides a detailed description of the conformational space available to ligand-free MBP, and has implications for understanding ligand recognition and allostery in related proteins

    Profile of subjective quality of life and its correlates in a nation-wide sample of high school students in an Arab setting using the WHOQOL-Bref

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The upsurge of interest in the quality of life (QOL) of children is in line with the 1989 Convention on the Rights of the Child, which stressed the child's right to adequate circumstances for physical, mental, and social development. The study's objectives were to: (i) highlight how satisfied Kuwaiti high school students were with life circumstances as in the WHOQOL-Bref; (ii) assess the prevalence of at risk status for impaired QOL and establish the QOL domain normative values; and (iii) examine the relationship of QOL with personal, parental, and socio-environmental factors.</p> <p>Method</p> <p>A nation-wide sample of students in senior classes in government high schools (N = 4467, 48.6% boys; aged 14-23 years) completed questionnaires that included the WHOQOL-Bref.</p> <p>Results</p> <p>Using Cummins' norm of 70% - 80%, we found that, as a group, they barely achieved the well-being threshold score for physical health (70%), social relations (72.8%), environment (70.8%) and general facet (70.2%), but not for psychological health (61.9%). These scores were lower than those reported from other countries. Using the recommended cut-off of <1<it>SD </it>of population mean, the prevalence of at risk status for impaired QOL was 12.9% - 18.8% (population age-adjusted: 15.9% - 21.1%). In all domains, boys had significantly higher QOL than girls, mediated by anxiety/depression; while the younger ones had significantly higher QOL (<it>p </it>< 0.001), mediated by difficulty with studies and social relations. Although poorer QOL was significantly associated with parental divorce and father's low socio-economic status, the most important predictors of poorer QOL were perception of poor emotional relationship between the parents, poor self-esteem and difficulty with studies.</p> <p>Conclusion</p> <p>Poorer QOL seemed to reflect a circumstance of social disadvantage and poor psychosocial well-being in which girls fared worse than boys. The findings indicate that programs that address parental harmony and school programs that promote study-friendly atmospheres could help to improve psychosocial well-being. The application of QOL as a school population health measure may facilitate risk assessment and the tracking of health status.</p

    Spiny lobster development: where does successful metamorphosis to the puerulus occur?: a review

    Get PDF
    This review re-addresses the question: Where does metamorphosis to the puerulus mainly take place among the shallow-water palinurids? A decade ago we reviewed this ecological question in a paper that focused on phyllosomal development of the western rock lobster, Panulirus cygnus. The main region of occurrence of its metamorphosis was found to be in the slope region beyond the shelf break. Because the puerulus of P. cygnus is a non-feeding stage, it was hypothesised that metamorphosis will not occur until the final phyllosoma has reached some critical, and specific, level of stored energy reserves. For late larval development and successful metamorphosis of P. cygnus, the richest food resources seem to be located in the slope waters adjoining the shelf break off Western Australia. This, like most shelf break areas, is a region of higher zooplankton and micronekton biomass than is usually found further offshore, and is dominated (in winter-spring months) by the warm south-flowing Leeuwin Current. In this new review, distribution and abundance data of final phyllosomas and pueruli are examined from, Panulirusargus, Panulirus cygnus, Panulirus japonicus, Panulirus ornatus and Jasus edwardsii, and where possible, related to features of the satellite imagery of the areas in which they occur. We hypothesise that metamorphosis will occur where the final stages have partaken of sufficient, appropriate nutrition to provide them with a reserve of bioenergetic resources, and this can occur where oceanographic fronts effect greater planktonic productivity and concentrations of food organisms. This may be near the shelf-break, or out to large distances offshore, because of large-scale oceanographic events such as the prevailing current system, its off-shoots, mesoscale eddy fronts, counter-currents, etc. However, we contend that, in terms of population recruitment, metamorphosis in most shallow-water palinurid species occurs mainly in the slope waters adjoining the shelf break of the region to which the species is endemic. Although some final phyllosomas may metamorphose much further offshore, it is unlikely that these pueruli will reach the shore, let alone settle and successfully moult to the juvenile stage. All of the data indicate that successful metamorphosis from the final-stage phyllosoma to the puerulus stage in all species occurs offshore but close to the continental shelf

    A chromosome conformation capture ordered sequence of the barley genome

    Get PDF
    201

    Cardiovascular control and stabilization via inclination and mobilization during bed rest

    Full text link
    Cardiovascular deconditioning has long been recognized as a characteristic of the physiological adaptation to long-term bed rest in patients. The process is thought to contribute to orthostatic intolerance and enhance secondary complications in a significant way. Mobilization is a cost-effective and simple method to maintain the cardiovascular parameters (i.e., blood pressure, heart rate) stable, counter orthostatic intolerance and reduce the risk of secondary problems in patients during long-term immobilization. The aim of this project is to control the cardiovascular parameters such as heart rate and blood pressure of bed rest patients via automated leg mobilization and body tilting. In a first step, a nonlinear model predictive control strategy was designed and evaluated on five healthy subjects and 11 bed rest patients. In a next step, a clinically feasible study was conducted on two patients. The mean values differed on average less than 1 bpm from the predetermined heart rate and less than 2.5 mmHg from the desired blood pressure values. These results of the feasibility study are promising, although heterogeneous disease etiologies and individual medication strongly influence the mechanically induced reactions. The long-term goal is an automation of the control of physiological signals and the mobilization of bed rest patients in an early phase of the rehabilitation process. Therefore, this new approach could help to strengthen the cardiovascular system and prevent secondary health problems arising from long-term bed rest
    corecore