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Abstract—E-Learning recommender system effectiveness re-
lies upon their ability to recommend appropriate learning con-
tents according to the learner learning style and preferences.
An effective approach to handle the learner preferences is to
build an efficient learner profile in order to gain adaptation
and individualisation of the learning environment. It is usually
necessary to know learning style and preferences of the learner on
a domain before adapting the learning process and course content.
This study focuses on identifying the learning styles of students in
order to adapt the learning process and course content. ULEARN
is an adaptive recommender learning system designed to provide
learners with personalised learning environment such as course
learning objects that match their adaptive profile. This paper
presents the algorithm used in ULEARN to reduce dynamically
the number of questions in Felder-Silverman learning style ques-
tionnaire used to initialise the adaptive learner profile. Firstly,
the questionnaire is restructured into four groups, one for each
learning style dimension; and a study is carried out to determine
the order in which questions will be asked in each dimension.
Then an algorithm is built upon this ranking of questions to
calculate dynamically the initial learning style of the user as they
go through the questionnaire.

Keywords—E-learning; adaptive-learning; algorithms; adaptive
learner profile; learning style; felder-silverman model; question-
naire; profiler.

I. INTRODUCTION

Over the last few decades, the WWW has turned into
a noteworthy source of information and a built up platform
for education and entertainment. Nonetheless, this remarkable
growth in the information available has led to information over-
load, as navigating through and finding relevant information
has become more and more challenging. Personalisation has
been widely used throughout the past few years to overcome
this [1] [2]. Learners frequently find themselves overwhelmed
by the huge amounts of information which may be associated
with their interests. How to present the learning material (g.g.
course learning objects) with respect to learning style is one
of the key issues for recommender learning systems [3]. One
approach to deal with this issue is to build the learner model,
which is a core component in any intelligent or adaptive
learning recommender system. The learner model represents
many of the learner’s features, such as knowledge and learning
style, so as to be accessible for offering adaptation [4]. The
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learner must be set at the core of the instructional situation in
order to encourage his/her integration into the learning process.

Adaptive learning uses techniques to interpret the activities
of learners on the basis of domain-specific models, infers
learner needs out of the interpreted activities, represents the
needs in associated models appropriately, and acts upon adap-
tive learner profile in order to dynamically facilitate the learn-
ing process [5]. Actually, most courses tried to overcome one-
size fits all approach. Adaptive learning systems can increase
the individualisation of learners’ learning [6] by changing
content and delivery for a learner based on their learning
profile as depicted in Figure 1. The learner profile includes
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Fig. 1. Classic model of learner profile adaptation

several data such as personal information, knowledge and
learning style. There are two main approaches to detect the
learning styles: the explicit modelling (questionnaire based)
and the implicit modelling (literature based).

The explicit modelling approach represents the learning
characteristics and needs of each learners based on data
obtained by requiring each learner to fill out a learning style
questionnaire. Examples of systems that use this explicit mod-
elling method are CS383 [55] INSPIRE [16] and iWeaver[51].
The implicit modelling approach means that an adaptive sys-
tem continuously updates the learner model by monitoring
interactions with the system; examples include Arthur system
[10] and Protus 2.0 [56].

The proposed ULEARN recommender learning system
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combines the two approaches. The Felder-Silverman learning
style questionnaire [35] is used to determine the initial learning
style of the learner which is used together with the user
preferences to initialise the learner profile. During the system
usage, the learner profile is dynamically adapted based on the
user behaviour (i.e. interactions with the system), knowledge
and performance at learning. This paper focuses on the initial-
isation of the adaptive learner profile using a dynamic variant
of the Felder-Silverman learning style questionnaire. The main
contribution of this paper is threefold:

e  An algorithm for constructing the adaptive learner pro-
file during registration based on the Felder-Silverman
learning style model (Sect. III)

e An empirical study to determine the order of ques-
tions for each of the four dimensions of the Felder-
Silverman learning style questionnaire (Sect. IV)

e  An algorithm, built upon this ranking of questions,
to calculate dynamically the initial learning style of
the user as they go through the questionnaire (Sect.
V). The innovative feature of this algorithm is its
ability to determine the learning style of the learner
in each dimension from the users responses to just a
few questions of the questionnaire; hence save the user
time and effort from answering all the 44 questions of
the Felder-Silverman learning style questionnaire.

II.  OVERVIEW OF THE FELDER-SILVERMAN LEARNING
STYLE MODEL

The learning style of the learner has been identified as an
important factor that impacts the learning process. Learning
style is the most significant parameter for personalization.
Learners differ in the ways of perceiving, processing and re-
ceiving the information. Based on the means of processing and
organizing the information, learners are considered to possess
their own style of learning. Figure 2 shows the four dimensions
of the Felder-Silverman learning style model (FSLSM) [35]
which are related to the processing, understanding, input, and
perception of information. Each of these dimensions is charac-
terised by a pair X/Y (i.e. active/reflective, sequential/global,
visual/verbal, and sensing/intuitive) meaning that the learning
style of a learner in that dimension is X or Y to some extent.
For example, in the information processing dimension the
learning style of a user is active or reflective to some extent.
In the information input dimension a user can be visual or
verbal to some extent. FSLSM is considered the most stable
and appropriate learning style model for adaptive hypermedia
learning systems [50].

According to this description, the Index of Learning Styles
(ILS) questionnaire proposes a list of 44 questions (see Table
I) effective in identifying the style of each learner. There
are 11 questions for each dimension and each question has
two possible answers: the answer “a” or the answer “b”. For
a dimension characterised by the pair X/Y, the answer “a”
corresponds to the preference for the learning style X, while
the answer “b” indicates the preference for the learning style
Y.

To determine the learning style of the learner in a di-
mension using the questionnaire of Felder-Silverman, it is
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Fig. 2. FSLSM learning style model

sufficient to count the number of answers ”a” and the number
of answers ”b” on the 11 questions corresponding to the
dimension and calculate the difference between these two
numbers. Obviously, this score is an odd number between 11
(all the answers of the learner are equal to “a”) and -11 (all
responses are equal to “b”). A learner whose score is 1 or
3 (-1 or -3) has a mild preference for X (resp. for Y); yet
is essentially well balanced to learn in a teaching environment
that favours X or Y. For a score of 5 or 7 (-5 or -7), the learner
has a moderate preference for X (resp. for Y) and will learn
more easily in a teaching environment that favours X (resp.
Y). Finally, a score of 9 or 11 (-9 or -11) indicates a strong
preference for X (resp. for Y); and the learner may have real
difficulty learning in an environment which does not support
that preference.

III. ALGORITHM FOR CREATING AN ADAPTIVE LEARNER
PROFILE

The proposed method for initialising the learner adaptive
profile based on dynamic learning style questionnaire is il-
lustrated by the block diagram in Figure 3. The profile of
the learner that includes the personal details of the learner is
collected from the learner during the registration process. After
the registration, student is asked to fill out ILS questionnaire
described in the previous section. The algorithm includes the
following basic steps:

e Step 1: (Registration) Student must register through
ULEARN learning portal before using the system.
During registration, personal data such as name, email
address and password are collected.

e  Step 2: (Fill out learning style questionnaire) After the
registration step the student must take the ILS ques-
tionnaire. As the student answers the questionnaire,
the system calculates dynamically the learning style of
the student for each dimension by counting the number
of answers “a” and the number of answers “b”. When
the number of “a” (or “b”) reaches 7 (i.e. 60% of the
11 questions) in one dimension, the system skips the
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Fig. 3. Algorithm to create adaptive learner profile

rest of questions for that dimension and moves to the
first question of the next dimension.

e  Step 3: (Compute learning style value for each dimen-
sion) Calculate the learning style for each dimension
as the percentages of “a” and “b”. For example, in
the dimension information input, one may have 60%
visual and 40% verbal.

e Step 4: (Store learning style values in the student’s
profile) The initial learning style calculated through
the ILS questionnaire is stored in the learner profile
database.

IV. RANKING THE QUESTIONNAIRE QUESTIONS

The ILS questionnaire has 44 questions; this may be too
long for some learners and may lead to undesired behaviours
such as skipping questions, answering falsely, or giving up
the questionnaire (and the system) all together. Therefore the
ULEARN learning system proposes a dynamic questionnaire
algorithm which does not need to go through all the 44
questions of the questionnaire to determine the learning style
of the learner. In order to do that, the ILS questionnaire
is restructured into 4 groups of 11 questions, one for each
dimension of the FSLSM. Within a dimension, questions are
ranked based on how easy it is to choose between answer “a”
and answer “b”. The easiest questions in that respect will come
first, and the difficult ones last.

A study was carried out to determine the ranking of
questions in each dimension. Participants to the study were
asked to tell for each question of the ILS questionnaire how
easy it is to choose between answer “a” and answer “b” using
a S-levels Likert scale: 1. Very easy, 2. Easy, 3. Intermediate,
4. difficult, and 5. Very difficult. Thirty-four responses were
received from which 30 were used for the analysis and the
other 4 not included because they were incomplete. The score
for each question were added up and normalised; and the
results for each dimension are depicted in Fig.4-7. The most
difficult questions are highlighted in red. Based on this study,
questions can be ranked in ascending order of difficulty levels

in each dimension as shown in Table I. This ranking of
questions is used as precondition for the algorithm to calculate
a learner’s initial learning style using the ILS questionnaire,
presented in the following section.
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V. ALGORITHM FOR CALCULATING INITIAL LEARNING
STYLE

The algorithm Initial LS described by the pseudo-
code in Fig. 8 and the flowchart in Fig. 9 calculates the initial
learning style of a learner using the ILS questionnaire given in
Table I. The algorithm counts the number of answers “a” and
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TABLE 1. ORDER OF QUESTIONS IN EACH DIMENSION

D1: Information Processing

Question

FSLSM question’s Sequence

ULEARN Sequence

Difficulty level

In classes I have taken a) I have usually gotten to know many of the students.
b) I have rarely gotten to know many of the students.

13

1

3.05

1 understand something better after I a) try it out. b) think it through. 1 2 3.3
When I have to work on a group project, I first want to a) have group brainstorming
where everyone contributes ideas.b) brainstorm individually and then come together 33 3 3.32
as a group to compare ideas.
When I am learning something new, it helps me toa) talk about it. 5 4 34
b) think about it. :
In a study group working on difficult material, I am more likely to 9 5 345
a) jump in and contribute ideas.b) sit back and listen. :
I prefer to study a) in a study group.b) alone. 21 6 35
I more easily remember a) something I have done. b) something I have thought a lot about. 29 7 3.6
I am more likely to be considered a) outgoing. b) reserved. 37 8 3.6
When I start a homework problem, I am more likely to a) start working on the solution 17 9 475
immediately.b) try to fully understand the problem first. )
The idea of doing homework in groups, with one grade for the entire group, a) appeals to me. a1 10 477
b) does not appeal to me. :
T would rather first a) try things out. b) think about how Im going to do it. 25 11 4.8
D2: Information Perception
When I am doing long calculations,a) I tend to repeat all my steps and
check my work carefully. b) I find checking my work tiresome 42 1 3.4
and have to force myself to do it.
I find it easier a) to learn facts. b) to learn concepts. 10 2 3.5
In reading nonfiction, I prefer
a) something that teaches me new facts or tells me 14 3 3.58
how to do something.b) something that gives me new ideas to think about.
When I am reading for enjoyment, I like writers to a) clearly say what they mean.
L o . 26 4 3.6
b) say things in creative, interesting ways.
When I have to perform a task, I prefer to a) master one way of doing it.
. S 30 5 3.7
b) come up with new ways of doing it.
If I were a teacher, I would rather teach a course a) that deals with facts and real life situations. 6 6 375
b) that deals with ideas and theories. .
I am more likely to be considered a) careful about the details of my work.
. 22 7 3.85
b) creative about how to do my work.
I prefer the idea of a) certainty. b) theory. 18 8 4.55
I consider it higher praise to call someone a) sensible. b) imaginative. 34 9 4.6
I prefer courses that emphasize a) concrete material (facts, data). b) abstract material (concepts, theories). 38 10 4.7
T would rather be considered a) realistic. b) innovative. 2 11 4.8
D3: Information Input
When I am learning a new subject, I prefer to a) stay focused on that subject, learning as much 36 | 34
about it as I can. b) try to make connections between that subject and related subjects :
I tend to a) understand details of a subject but may be fuzzy about its overall structure. 4 5 345
b) understand the overall structure but may be fuzzy about details. o
It is more important to me that an instructor a) lay out the material in clear sequential steps.
. . ’ 3 20 3 3.45
b) give me an overall picture and relate the material to other subjects.
When solving problems in a group, I would be more likely to a) think of the steps in the solution process.
. . L N 3 44 4 3.55
b) think of possible consequences or applications of the solution in a wide range of area
When considering a body of information, I am more likely to a) focus on details and miss the big picture. 28 5 36
b) try to understand the big picture before getting into the details )
Some teachers start their lectures with an outline of what they will cover. Such outlines are
40 6 3.6
a) somewhat helpful to me. b) very helpful to me.
When I am analyzing a story or a novel a) I think of the incidents and try to put them together to figure
out the themes. b) I just know what the themes are when,] finish reading and then 16 7 3.65
I have to go back and find the incidents that demonstrate them.
When [ solve math problems a) I usually work my way to the solutions one step at a time. 12 8 375
b) I often just see the solutions but then have to struggle to figure out the steps to get to them. .
I learn a) at a fairly regular pace. If I study hard, Ill get it. b) in fits and starts., o4 9 45
111 be totally confused and then suddenly it all clicks. i
When writing a paper, I am more likely to a) work on (think about or write) the beginning of
the paper and progress forward. b) work on (think about or write) different parts 32 10 4.65
of the paper and then order them.
Once I understand a) all the parts, I understand the whole thing. b) the whole thing,
8 11 4.7
I see how the parts fit.
D4: Information Understanding
When I think about what I did yesterday, I am most likely to get a) a picture. b) words 3 1 3.15
When I meet people at a party, I am more likely to remember a) what they looked like.
: 35 2 32
b) what they said about themselves
When I see a diagram or sketch in class, I am most likely to remember a) the picture. 27 3 33
b) what the instructor said about it. ) o
I prefer to get new information in a) pictures, diagrams, graphs, or maps.
. . . . 7 4 35
b) written directions or verbal information.
When I get directions to a new place, I prefer a) a map. b) written instructions 23 5 3.6
In a book with lots of pictures and charts, I am likely to a) look over the pictures and 1 6 37
charts carefully. b) focus on the written text. B
I remember best a) what I see. b) what I hear. 19 7 3.75
I tend to picture places I have been a) easily and fairly accurately. 3 3 45
b) with difficulty and without much detail. )
I like teachers a) who put a lot of diagrams on the board. b) who spend a lot of time explaining. 15 9 4.65
When someone is showing me data, I prefer a) charts or graphs. b) text summarizing the results 31 10 4.8
For entertainment, I would rather a) watch television. b) read a book. 39 11 4.85
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the number of answers “b” in each dimension. If the number of
answers “a” or the number of answers “b” reaches 7, the rest of
questions in that dimension will be skipped. In this way, only
learners with mild preferences will take all the 11 questions
of the dimension. This is based on the assumption that if 60%
of a learner’s answers are in favour of one preference (X or
Y) in a dimension, then that learner will likely be fine in a
teaching environment that favours that preference. However,
this threshold of 60% may be revised for some courses as
appropriate during the validation of the system in real-word
settings.

In the flowchart in Fig. 9, the variable ¢ ranges over the
4 dimensions of the FSLSM and the variable j refers to the
current question being processed within a dimension. Thus, j
ranges over the 11 questions of a dimension. The number of
answers “a” (answers “b”) in the dimension ¢ is calculated in
the variable A; (resp. B;), for 1 < i < 4. The algorithm ends
when all the 4 dimensions have been processed. To illustrate
how this algorithm works, Table II shows the execution outputs
for 5 different learners who have taken the ILS questionnaire.
The notation #a means the number of answer “a”. The learner
Clara, in each dimension chooses the same answer for the first
7 questions. She demonstrates the best case scenario where the
smallest (28) number of questions are taken.

Fatima and Bob represent the worst case scenarios where
all the 44 questions are taken; these are the only situations
where this happens. For Fatima the difference #a - #b in each
dimension is either 1 or -1, while that difference is either 3
or -3 for Bob. They both have mild learning style preferences
(see Sect. II) in each dimension and so are well balanced to
learn in any teaching environment. The other learners learning
styles are moderate at least.

Algorithm Initial_LS

Input: the ILS questionnaire structured
as in Table I

Output: an array A[l..4] of number of
answer "a" in each dimension and
an array B[l..4] of number of
answer "b" in each dimension

Begin

/+ 1 ranges over the 4 dimensions =/
/+ j ranges over the 11 questions in 1 =/
for i =1 to 4 do

A[i] = 0;

B[i] = 0;

j=1;

while (A[i]<7 and B[i1]<7 and j<=11) do

read answer to question j
of dimension ij;

if (answer is "a") then
Ali] = A[i] + 1;
else
B[i] = B[i] + 1;
fi
J o= J+1;
od
od
End
Fig. 8. Pseudo-code of the algorithm for calculating initial learning style
TABLE II. EXAMPLES OF EXECUTION OUTPUT OF THE ALGORITHM
INITIAL_LS
Learning Style Dimensions
Processing | Perception | Input Understanding
#a #b #a #b #a #b #a #b Total

Tom 2 7 1 7 7 3 0 7 34
Clara 0 7 7 0 0 7 0 7 28
Fatima | 5 6 6 5 5 6 6 5 44
Bob 7| 4 4 |7 T [ 7 |7 |4 i
Alice 1 7 1 7 7 0 0 7 30

VI. IMPLEMENTATION

Our proposed framework ULEARN is an adaptive learning
management system to provide adaptive course content based
on personalised student profile. ULEARN has been imple-
mented in java and SQL sever. The main purpose of system
is to recommend useful and personalised materials prepared
based on learner preferences in e-learning context. ULEARN
supports three main roles:

1)  Learners: attend courses and use the system in order
to gain certain knowledge.

2) instructors: add course lessons and learning objects
in different format as well as assignments.

3) administrator: assigns learners and instructors to spe-
cific courses and manages system database.

Hence, the system provides separate user interfaces for these
roles. Instructor’s interface helps managing data about learners
and course materials. The work-through of the learner interface
is given in Fig. 10. An existing user logs in the system by
entering a valid username and password as shown in Fig. 11.
A new user needs to register with the system and will be

IEEE

5|Page



Read answer to question j of
dimension i

answer
is “a”

lNo

Bi=Bi+1

Yes
Ai=Ai+1 |€—

g

Ai=7orBi=7

orj=11 i=i+1

— =i+

Fig. 9. Flowchart of the algorithm for calculating initial learning style

required to enter personal information as depicted in Fig. 12;
and then answer the ILS questionnaire as explained above. The
questionnaire interface looks like in Fig. 13.

VII. RELATED WORK

This section presents a review of the existing literature
relevant to this study with a focus on a brief overview of
common techniques used to adapt personalized learner profile
and previous related review studies. Table III presents a
comparative study between the most known personalised e-
learning systems. In addition, we give some examples of e-
learning systems that implement these methods for modelling
the learner’s individual differences and highlight their limita-
tions.

VIII. CONCLUSION

Personalised learner profile has emerged as core area
in adaptive e-learning applications in which each learner’s
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interests, preferences and contextual information were studied
precisely. Characteristics of learning style play crucial role
in identifying their learning style preferences. It helps to
provide adaptive learning experiences in personalisation of
learning materials based on the interactions with the learners.
This paper proposes an algorithm for constructing the adap-
tive learner profile during registration based on the Felder-
Silverman learning style model. An empirical study was
undertaken to determine the order of questions for each of
the four dimensions of the Felder-Silverman learning style
questionnaire. This ranking of questions was used to build
an algorithm that calculates dynamically the initial learning
style of the user as they go through the questionnaire. This
algorithm can infer the learning style of the learner in each
dimension from the users responses to just a few questions
of the questionnaire; hence save the user time and effort from
answering all the 44 questions of the Felder-Silverman learning
style questionnaire. In future work, an adaptive engine will
be developed to adapt the user profile based on the learner
behaviour, knowledge and performances.
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