12 research outputs found

    Digitonin Permeabilization Does Not Affect Mitochondrial Function And Allows The Determination Of The Mitochondrial Membrane Potential Of Trypanosoma Cruzi In Situ

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Digitonin can be used to permeabilize selectively the plasma membrane of Trypanoaoma cruzi epimastigotes without significantly affecting the functional integrity of mitochondria. Addition of digitonin at concentrations close to 64 μM caused decrease in the rate of basal respiration of epimastigotes similar to that caused by oligomycin. A further addition of carbonyl cyanide p-trifluorophenylhydrazone (FCCP) brought respiration to the same rate observed prior to the inclusion of digitonin or oligomycin. This suggests that like oligomycin, digitonin is shifting respiration to a nonphosphorylating state probably by depleting the cells from adenine nucleotides due to permeabilization of the plasma membrane. The use of low concentrations of digitonin allowed the quantitative determination of the mitochondrial membrane potential of these cells in situ using safranine O. The response of epimastigotes mitochondrial membrane potential to phosphate, FCCP, valinomycin, nigericin, ADP, and Ca2+ indicates that these mitochondria behave similarly to vertebrate mitochondria regarding the properties of their electrochemical proton gradient. In addition, T. cruzi mitochondria are able to build up and retain a membrane potential of a value comparable to that of mammalian mitochondria. The trypanocidal drug crystal violet, as well as other cationic drugs such as dequalinium, induced a rapid dose-related collapse of the inner mitochondrial membrane potential.266221443114434CAPES; São Paulo Research Foundation; CNPq; São Paulo Research Foundation; FAPESP; São Paulo Research FoundationFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Ca2+ Transport In Digitonin-permeabilized Trypanosomatids

    No full text
    The use of digitonin to permeabilize Leishmania mexicana mexicana, Leishmania agamae, and Crithidia fasciculata plasma membranes enabled us to study Ca2+ transport in situ. The present results show that the mitochondria of these trypanosomatids are able to build up and retain a membrane potential as indicated by a tetraphenylphosphonium-sensitive electrode. Ca2+ uptake caused membrane depolarization compatible with the existence of an electrogenically mediated Ca2+ transport mechanism in these mitochondria. Ca2+ uptake was partially inhibited by ruthenium red, almost totally inhibited by carbonyl cyanide p-trifluoromethoxyphenylhydrazone, and stimulated by inorganic phosphate. Large amounts of Ca2+ were retained by C. fasciculata mitochondria even after addition of thiols and NAD(P)H oxidants such as t-butylhydroperoxide and diamide. In contrast, Ca2+ was not retained in the matrix of Leishmania sp. mitochondria for long periods of time. In addition to the mitochondrial Ca2+ uptake, a vanadate-sensitive Ca2+-transporting system was also detectable in these trypanosomatids. © 1990.421119124Carafoli, Intracellular calcium homeostasis (1987) Annu. Rev. Biochem., 56, pp. 395-433Nicholls, Intracellular calcium homeostasis (1986) Br. Med. Bull., 42, pp. 353-358Hansford, Relation between mitochondrial calcium transport and control of energy metabolism (1985) Rev. Phys. Biochem. Pharm., 102, pp. 1-72McCormack, Denton, Ca2+ as a second messenger within mitochondria (1986) Trends Biochem. Sci., 11, pp. 258-262Bowles, Voorheis, Release of the surface coat from the plasma membrane of intact bloodstream forms of Trypanosoma brucei requires Ca2+ (1982) FEBS Lett., 139, pp. 17-216Voorheis, Martin, Characteristics of the calcium-mediated mechanism activating adenylate cyclase in Trypanosoma brucei (1981) Eur. J. Biochem., 116, pp. 471-477Dolan, Reid, Voorheis, Calcium ions initiate the selective depolymerization of the pellicular microtubules in bloodstream forms of Trypanosoma brucei (1986) J. Cell Sci., 80, pp. 123-140Clarkson, Amole, Role of calcium in trypanocidal drug action (1982) Science, 216, pp. 1321-1323Gbenle, Akinrimisi, A calcium dependent endoribonuclease from Trypanosoma congolense cytoplasm (1984) Mol. Biochem. Parasitol., 12, pp. 15-24Holwill, McGregor, Effects of calcium on flagellar movement in the trypanosome Crithidia oncopelti (1976) J. Exp. Biol., 65, pp. 229-242Eilam, El-On, Spira, Leishmania major: excreted factor, calcium ions, and the survival of amastigotes (1985) Exp. Parasitol., 59, pp. 161-168Morrow, Flory-Granger, Krassner, Effect of the ionophores A23187 and X-537A (Lasalocid) and the divalent cations Ca2+, Mg2+, Ba2+ and Mn2+ on transformation in Leishmania donovani (1981) Comp. Biochem. Physiol., 69 A, pp. 65-72Docampo, Vercesi, Ca2+ transport by coupled Trypanosoma cruzi mitochondria in situ (1989) J. Biol. Chem., 264, pp. 108-111Docampo, Vercesi, Characteristics of Ca2+ transport by Trypanosoma cruzi mitochondria in situ (1989) Arch. Biochem. Biophys., 272, pp. 122-129Warren, Metabolism of Schizotrypanum cruzi Chagas (1960) I. Effect of culture age and substrate concentration on respiratory rate, 46, pp. 529-539. , J. ParasitolGornall, Bardawill, David, Determination of serum proteins by means of the biuret reaction (1949) J. Biol. Chem., 177, pp. 751-766Becker, Fiskum, Lehninger, Regulation of free Ca2+ by liver mitochondria and endoplasmic reticulum (1980) J. Biol. Chem., 255, pp. 9009-9012Kamo, Muratsugu, Hongoh, Kobatake, Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state (1979) J. Membrane Biol., 49, pp. 105-121Coelho, Vercesi, Retention of Ca2+ by rat liver and heart mitochondria (1980) Effect of phosphate, Mg2+, and NAD(P) redox state, 204, pp. 141-147. , Arch. Biochem. BiophysMacedo, Ferraz, Pereira da Silva, Vercesi, Ca2+ dependent NADP+-induced alterations in membrane permeability of rat liver mitochondria (1988) Integration of Mitochondrial Function, pp. 535-542. , J. Lemasters, Plenum Press, New YorkGranger, Lehninger, Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells (1982) J. Biol. Chem., 95, pp. 527-535Moreadith, Fiskum, Isolation of mitochondria from ascitis tumor cells permeabilized with digitonin (1984) Arch. Biochem. Biophys., 137, pp. 360-367Prentki, Wollheim, Lew, Ca2+ homeostasis in permeabilized human neutrophils (1984) Characterization of Ca2+ sequestering pools and the action of inositol 1,4,5-triphosphate, 259, pp. 13777-13782. , J. Biol. ChemCazzulo, Valle, Docampo, Cannata, Intracellular distribution of carbon-dioxide fixing enzymes in Trypanosoma cruzi and Crithidia fasciculata (1980) J. Gen. Microbiol., 117, pp. 271-274Frasch, Segura, Cazzulo, Stoppani, Adenosine triphosphatase activities in Trypanosoma cruzi (1978) Comp. Biochem. Physiol., 60 B, pp. 271-275Letelier, Allende, Gonzalez, Aldunate, Repetto, Morello, Phosphatase activity in Trypanosoma cruzi (1986) Phosphate removal from ATP, phosphorylated proteins and other phosphate compounds, 85 B, pp. 375-380. , Comp. Biochem. Physiolde, Stoppani, Actividad de Mg2+-ATPasa y (Ca2+-Mg2+)ATPasa en Trypanosoma cruzi (1988) Mem. Inst. Oswaldo Cruz, 83, p. 74Benaim, Calmodulin and the intracellular calcium regulation in Leishmania braziliensis and Trypanosoma cruzi (1988) Mem. Inst. Oswaldo Cruz, 83, p. 72Philosoph, Zilberstein, Regulation of intracellular calcium in promastigotes of the human protozoan parasite Leishmania donovani (1989) J. Biol. Chem., 264, pp. 10420-10424Benaim, Bermudez, Urbina, Ca2+ transport in isolated mitochondrial vesicles from Leishmania braziliensis promastigotes (1990) Mol. Biochem. Parasitol., 39, pp. 61-6

    Role Of Trypanosoma Cruzi Peroxiredoxins In Mitochondrial Bioenergetics

    No full text
    Trypanosoma cruzi cytosolic (TcCPx) and mitochondrial tryparedoxin peroxidase (TcMPx) play a fundamental role in H 2O 2 detoxification. Herein, mitochondrial bioenergetics was evaluated in cells that overexpressed TcCPx (CPx) and TcMPx (MPx) and in pTEX. In MPx, a higher expression was observed for TcCPx, and the same correlation was true for CPx. Differences in H 2O 2 release among the overexpressing cells were detected when the mitochondrial respiratory chain was inhibited using antimycin A or thenoyltrifluoroacetone. MPx had higher O 2 consumption rates than pTEX and CPx, especially in the presence of oligomycin. In all of the cells, the mitochondrial membrane potential and the ATP levels were similar. Because of the mild uncoupling that was observed in MPx, the presence or induction of a proton transporter in the mitochondrial membrane is suggested when TcMPx is expressed at higher levels. Our results show a possible interplay between the cytosolic and mitochondrial antioxidant systems in a trypanosomatid. © Springer Science+Business Media, LLC 2011.434419424Barros, M.H., Bandy, B., Tahara, E.B., Kowaltowski, A.J., (2004) J Biol Chem, 279, pp. 49883-49888Boveris, A., Stoppani, A.O.M., (1977) Experientia, 33, pp. 1306-1308Boveris, A., Sies, H., Martino, E.E., Docampo, R., Turrens, J.F., Stoppani, A.O., (1980) Biochem J, 188, pp. 643-648Cadenas, E., (2004) Mol Asp Med, 25, pp. 17-26Castellani, O., Ribeiro, L., Fernandes, F., (1967) J Protozool, 14, pp. 447-451Castro, H., Sousa, C., Santosm, N., Budde, H., Cordeiro-Da-Silva, A., Flohé, L., Tomás, A.M., (2004) Mol Biochem Parasitol, 36, pp. 137-147Castro, H., Romao, S., Carvalho, S., Teixeira, F., Sousa, C., Tomás, A.M., (2010) PLoS One, 5 (E1), p. 2607Jms, D., Lowry, C.V., Kja, D., (1995) Arch Biochem Biophys, 317, pp. 1-6Facundo, H.T., De Paula, J.G., Kowaltowski, A.J., (2007) Free Radical Biol Med, 42, pp. 1039-1048Finzi, J.K., Chiavegatto, C.W., Corat, K.F., Lopez, J.A., Cabrera, O.G., Mielniczki-Pereira, A.A., Colli, W., Gadelha, F.R., (2004) Mol Biochem Parasitol, 133, pp. 37-43Hernandez, F., Turrens, J., (1998) Mol Biochem Parasitol, 93, pp. 135-137Jo, S.H., Son, M.K., Koh, H.J., Lee, S.M., Song, I.H., Kim, Y.O., Lee, Y.S., Huh, T.L., (2001) J Biol Chem, 276, pp. 16168-16176Kowaltowski, A.J., Costa, A.D., Vercesi, A.E., (1998) FEBS Lett, 425, pp. 213-216Kowaltowski, A., Souza-Pinto, N., Castilho, R., Vercesi, A., (2009) Free Radical Biol Med, 47, pp. 333-343Mehta, A., Shaha, C., (2004) J Biol Chem, 279, pp. 117798-117813Meziane-Cherif, D., Kmi, A., Sergheraert, C., Tartar, A., Dubremetz, J.F., Ouaissi, M.A., (1994) Exp Parasitol, 79, pp. 536-541Mielniczki-Pereira, A., Chiavegatto, C., Lopez, J., Colli, W., Alves, M.J., Gadelha, F.R., (2007) Acta Trop, 101, pp. 54-60Monteiro, G., Kowaltowski, A.J., Barros, M.H., Netto, L.E., (2004) Arch Biochem Biophys, 425, pp. 14-24Nogueira, F.B., Krieger, M.A., Nirdé, P., Goldenberg, S., Romanha, A.J., Smf, M., (2006) Acta Trop, 100, pp. 119-132Piacenza, L., Irigoin, F., Alvarez, M.N., Peluffo, G., Taylor, M., Kelly, J., Wilkinson, S.R., Radi, R., (2007) Biochem J, 403, pp. 323-334Piacenza, L., Peluffo, G., Alvarez, M.N., Kelly, J.M., Wilkinson, S.R., Radi, R., (2008) Biochem J, 410, pp. 359-368Piacenza, L., Zago, M.P., Peluffo, G., Alvarez, M.N., Basombrio, M.A., Radi, R., (2009) Int J Parasitol, 39, pp. 1455-1464Piñeyro, M.D., Parodi-Talice, A., Arcari, T., Robello, C., (2008) Gene, 408, pp. 45-50Prathalingham, S.R., Wilkinson, S.R., Horn, D., Kelly, J.M., (2007) Antimicrob Agents Chemother, 51, pp. 755-758Tian, W., Brausntein, L.D., Pang, J., Stuhlmeier, K.M., Xi, Q., Tian, X., Stanton, R.C., (1998) J Biol Chem, 273, pp. 10609-10617Vercesi, A.E., Bernardes, C.F., Hoffmann, M.E., Gadelha, F.R., Docampo, R., (1991) J Biol Chem, 266, pp. 14431-14434Vercesi, A.E., Hoffmann, M.E., Bernardes, C.F., Docampo, R., (1993) J Med Braz Biol Res, 26, pp. 355-363Vercesi, A.E., Kowaltowski, A.J., Oliveira, H.C., Castilho, R.F., (2006) Front Biosci, 11, pp. 2554-2564Wiese, A.G., Pacifici, R.E., Davies, K.J., (1995) Arch Biochem Biophys, 318, pp. 231-240Wilkinson, S.R., Temperton, N.J., Mondragon, A., Kelly, J.M., (2000) J Biol Chem, 275, pp. 8220-8225Wilkinson, S.R., Meyer, D.J., Taylor, M.C., Bromley, E.V., Miles, M.A., Kelly, J.M., (2002) J Biol Chem, 277, pp. 17062-17071Wilkinson, S.R., Horn, D., Prathalingam, S.R., Kelly, J.M., (2003) J Biol Chem, 278, pp. 31640-31646Wilkinson, S.R., Taylor, M.C., Horn, D., Kelly, J.M., Cheeseman, I., (2008) PNAS, 105, pp. 5022-502

    Release of the cytosolic tryparedoxin peroxidase into the incubation medium and a different profile of cytosolic and mitochondrial peroxiredoxin expression in H2O2-treated Trypanosoma cruzi tissue culture-derived trypomastigotes

    Get PDF
    AbstractTrypanosoma cruzi antioxidant enzymes are among the factors that guarantee parasite survival and maintain infection, enabling T. cruzi to cope with oxidative stress. Herein, the expression of cytosolic (TcCPx) and mitochondrial (TcMPx) tryparedoxin peroxidases was evaluated in tissue culture-derived trypomastigotes upon incubation with different concentrations of H2O2. TcCPx expression slightly increased (5.4%) in cells submitted to 10μM H2O2 treatment when compared to the control, but decreased when higher H2O2 concentrations (20–50μM) were employed. Under these conditions, TcMPx expression increased (∼53%) with 10μM-treatment compared to the control, followed by a reduction that reached ∼46% of the control when using the highest concentration tested. Interestingly, in the supernatant of the incubations, TcCPx, but not TcMPx, was detected, and its levels increased concomitantly with its decreased expression in the intracellular compartment. Our data show that peroxiredoxins in the tissue culture-derived trypomastigote can be modulated under oxidative stress and are present in higher amounts when compared to the epimastigote stage of T. cruzi. Additionally, due to the different expression patterns observed upon H2O2-treatment, each peroxiredoxin may play a distinct role in protecting the parasite under oxidative stress conditions

    Trypanosoma cruzi tryparedoxin II interacts with different peroxiredoxins under physiological andoxidative stress conditions.

    No full text
    Trypanosoma cruzi, the etiologic agent of Chagas disease, has to cope with reactive oxygen and nitrogen species during its life cycle in order to ensure its survival and infection. The parasite detoxifies these species through a series of pathways centered on trypanothione that depend on glutathione or low molecular mass dithiol proteins such as tryparedoxins. These proteins transfer reducing equivalents to peroxidases, including mitochondrial and cytosolic peroxiredoxins, TcMPx and TcCPx, respectively. In T. cruzi two tryparedoxins have been identified, TXNI and TXNII with different intracellular locations. TXNI is a cytosolic protein while TXNII due to a C-terminal hydrophobic tail is anchored in the outer membrane of the mitochondrion, endoplasmic reticulum and glycosomes. TXNs have been suggested to be involved in a majority of biological processes ranging from redox mechanisms to protein translation. Herein, a comparison of the TXNII interactomes under physiological and oxidative stress conditions was examined. Under physiological conditions, apart from the proteins with unknown biological process annotation, the majority of the identified proteins are related to cell redox homeostasis and biosynthetic processes, while under oxidative stress conditions, are involved in stress response, cell redox homeostasis, arginine biosynthesis and microtubule based process. Interestingly, although TXNII interacts with both peroxiredoxins under physiological conditions, upon oxidative stress, TcMPx interaction prevails. The relevance of the interactions is discussed opening a new perspective of TXNII functions.Fil: Dias, L.. Universidade Estadual de Campinas; BrasilFil: Peloso, E.F.. Universidade Estadual de Campinas; BrasilFil: Leme, A.F.P.. Associaçáo Brasileira de Informática;Fil: Carnielli, C.M.. Associaçáo Brasileira de Informática;Fil: Pereira, C.N.. Universidade Estadual de Campinas; BrasilFil: Werneck, C.C.. Universidade Estadual de Campinas; BrasilFil: Guerrero, Sergio Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Gadelha, F.R.. Universidade Estadual de Campinas; Brasi

    A promising action of riboflavin as a mediator of leukaemia cell death

    No full text
    Besides having a pivotal biological function as a component of coenzymes, riboflavin appears a promissing antitumoral agent, but the underlying molecular mechanism remains unclear. In this work, we demonstrate that irradiated riboflavin, when applied at microM concentrations, induces an orderly sequence of signaling events finally leading to leukemia cell death. The molecular mechanism involved is dependent on the activation of caspase 8 caused by overexpression of Fas and FasL and also on mitochondrial amplification mechanisms, involving the stimulation of ceramide production by sphingomyelinase and ceramide synthase. The activation of this cascade led to an inhibition of mitogen activated protein kinases: JNK, MEK and ERK and survival mediators (PKB and IAP1), upregulation of the proapoptotic Bcl2 member Bax and downregulation of cell cycle progression regulators. Importantly, induction of apoptosis by irradiated riboflavin was leukaemia cell specific, as normal human lymphocytes did not respond to the compound with cell death. Our data indicate that riboflavin selectively activates Fas cascade and also constitutes a death receptor-engaged drug without harmful side effects in normal cells, bolstering the case for using this compound as a novel avenue for combating cancerous diseas

    The Cratylia Mollis Seed Lectin Induces Membrane Permeability Transition In Isolated Rat Liver Mitochondria And A Cyclosporine A-insensitive Permeability Transition In Trypanosoma Cruzi Mitochondria

    No full text
    Previous results provided evidence that Cratylia mollis seed lectin (Cramoll 1,4) promotes Trypanosoma cruzi epimastigotes death by necrosis via a mechanism involving plasma membrane permeabilization to Ca2+ and mitochondrial dysfunction due to matrix Ca2+ overload. In order to investigate the mechanism of Ca2+-induced mitochondrial impairment, experiments were performed analyzing the effects of this lectin on T. cruzi mitochondrial fraction and in isolated rat liver mitochondria (RLM), as a control. Confocal microscopy of T. cruzi whole cell revealed that Cramoll 1,4 binding to the plasma membrane glycoconjugates is followed by its internalization and binding to the mitochondrion. Electrical membrane potential (ΔΨm) of T. cruzi mitochondrial fraction suspended in a reaction medium containing 10 μM Ca2+ was significantly decreased by 50 μg/ml Cramoll 1,4 via a mechanism insensitive to cyclosporine A (CsA, membrane permeability transition (MPT) inhibitor), but sensitive to catalase or 125 mM glucose. In RLM suspended in a medium containing 10 μM Ca2+ this lectin, at 50 μg/ml, induced increase in the rate of hydrogen peroxide release, mitochondrial swelling, and ΔΨm disruption. All these mitochondrial alterations were sensitive to CsA, catalase, and EGTA. These results indicate that Cramoll 1, 4 leads to inner mitochondrial membrane permeabilization through Ca2+ dependent mechanisms in both mitochondria. The sensitivity to CsA in RLM characterizes this lectin as a MPT inducer and the lack of CsA effect identifies a CsA-insensitive MPT in T. cruzi mitochondria. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.614381388Alves, M.J., Colli, W., Agglutination of Trypanosoma cruzi by concanavalin A (1974) J. Protozool., 21 (4), pp. 575-578Baines, C.P., Kaiser, R.A., Purcell, N.H., Blair, N.S., Osinska, H., Hambleton, M.A., Brunskill, E.W., Molkentin, J.D., Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death (2005) Nature, 434, pp. 658-662Bernardi, P., Forte, M., The mitochondrial permeability transition pore (2007) Novartis Found. Symp., 287, pp. 157-264Bernardi, P., Krauskopf, A., Basso, E., Petronilli, V., Blachly-Dyson, E., Lisa, D., Forte, M.A., The mitochondrial permeability transition from in vitro artifact disease target (2006) FEBES J., 273, pp. 2077-2099Bourguignon, S.C., De Souza, W., Souto-Padron, T., Localization of lectin-binding sites on the surface of Trypanosoma cruzi grown in chemically defined conditions (1998) Histochem. Cell Biol., 110 (5), pp. 527-534Carranza, J.C., Kowaltowski, A.J., Mendonca, M.A., De Oliveira, T.C., Gadelha, F.R., Zingales, B., Mitochondrial bioenergetics and redox state are unaltered in Trypanosoma cruzi isolates with compromised mitochondrial complex i subunit genes (2009) J. Bioenerg. Biomembr., 41 (3), pp. 299-308Castellani, O., Ribeiro, L.V., Fernandes, J.F., Differentiation of Trypanosoma cruzi in culture (1967) J. Protozool., 14 (3), pp. 447-451Castilho, R.F., Kowaltowski, A.J., Vercesi, A.E., The irreversibility of inner mitochondrial membrane permeabilization by Ca2+ plus prooxidants is determined by the extent of membrane protein thiol cross-linking (1996) J. Bioenerg. Biomembr., 28, pp. 523-529Cestari, I., Evans-Osses, I., Schlapbach, L.J., De Messias-Reason, I., Ramirez, M.I., Mechanisms of complement lectin pathway activation and resistance by trypanosomatid parasites (2013) Mol. Immunol., 53 (4), pp. 328-334Correia, M.T.S., Coelho, L.C.B.B., Purification of a glucose/mannose specific, isoform 1, from seeds of Cratylia mollis Mart. (Camaratu bean) (1995) Appl. Biochem. Biotech., 55, pp. 262-273Crompton, M., The mitochondrial permeability transition pore and its role in cell death (1999) Biochem. J., 341 (2), pp. 233-249Docampo, R., Lukeš, J., Trypanosomes and the solution to a 50-year mitochondrial calcium mystery (2012) Trends Parasitol., 28 (1), pp. 31-37Docampo, R., Vercesi, A.E., Ca2+ transport by coupled Trypanosoma cruzi mitochondria in situ (1989) J. Biol. Chem., 264 (1), pp. 108-111Docampo, R., Vercesi, A.E., Characteristics of Ca2+ transport by Trypanosoma cruzi mitochondria in situ (1989) Arch. Biochem. Biophys., 272, pp. 122-129Docampo, R., Lopes, J.N., Cruz, F.S., Souza, W., Trypanosoma cruzi: Ultrastructural and metabolic alterations of epimastigotes by beta-lapachone (1977) Exp. Parasitol., 42 (1), pp. 142-149Fagian, M.M., Pereira-Da-Silva, L., Martins, I.S., Vercesi, A.E., Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants (1990) J. Biol. Chem., 265, pp. 19955-19960Fernandes, M.P., Inada, N.M., Chiaratti, M.R., Araújo, F.F.B., Meirelles, F.V., Correia, M.T.S., Coelho, L.C.B.B., Vercesi, A.E., Mechanism of Trypanosoma cruzi death induced by Cratylia mollis seed lectin (2010) J. Bioenerg. Biomembr., 42, pp. 69-78Figueira, T.R., Barros, M.H., Camargo, A.A., Castilho, R.F., Ferreira, J.C.B., Kowaltowski, A.J., Sluse, F.E., Vercesi, A.E., Mitochondria as a source of reactive oxygen and nitrogen species: From molecular mechanisms to human health (2013) Antioxid. Redox Signal., 18 (16), pp. 1-46Fortes, F., Castilho, R.F., Catisti, R., Carnieri, E.G., Vercesi, A.E., Ca2+ induces a cyclosporin A-insensitive permeability transition pore in isolated potato tuber mitochondria mediated by reactive oxygen species (2001) J. Bioenerg. Biomembr., 33, pp. 43-51Gadelha, F.R., Gonçalves, C.C., Mattos, E.C., Alves, M.J., Piñeyro, M.D., Robello, C., Peloso, E.F., Release of the cytosolic tryparedoxin peroxidase into the incubation medium and a different profile of cytosolic and mitochondrial peroxiredoxin expression in H2O2-treated Trypanosoma cruzi tissue culture-derived trypomastigotes (2013) Exp. Parasitol., 133 (3), pp. 287-293Giorgio, V., Von Stockum, S., Antoniel, M., Fabbro, A., Fogolari, F., Forte, M., Glick, G.D., Bernardi, P., Dimers of mitochondrial ATP Synthase form the permeability transition pore (2013) PNAS, 110 (15), pp. 5887-5892Glancy, B., Balaban, R.S., Role of mitochondrial Ca2+ in the regulation of cellular energetics (2012) Biochemistry, 51 (14), pp. 2959-2973Gornall, A.G., Bardawill, C.J., David, M.M., Determination of serum proteins by means of the biuret reaction (1949) J. Biol. Chem., 177 (2), pp. 751-766Hajnõczky, G., Csordás, G., Yi, M., Old players in a new role: Mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria (2002) Cell Calcium, 32, pp. 363-377Hajnõczky, G., Csordás, G., Madesh, M., Pacher, P., The machinery of local Ca2+ signalling between sarco-endoplasmic reticulum and mitochondria (2000) J. Physiol., 529, pp. 69-81Hansson, M.J., Morata, S., Chen, L., Matsuyama, N., Suzuky, Y., Nakajima, S., Tanoue, T., Elmer, E., Cyclophilin D-sensitive mitochondrial permeability transition in adult human brain and liver mitochondria (2011) J. Neurotrauma, 28, pp. 143-153Holmskov, U., Thiel, S., Jensenius, J.C., Collectins and ficolins: Humoral lectins of the innate immune defense (2003) Annu. Rev. Immunol., 21, pp. 547-578Huang, G., Vercesi, A.E., Docampo, R., Essential regulation of cell bioenergetics in Trypanosoma brucei by the mitochondrial calcium uniporter (2013) Nat. Commun., 4, p. 2865. , doi: 10.1038/ncomms3865Irigoin, F., Inada, N.M., Fernandes, M.P., Piacenza, L., Gadelha, F.R., Vercesi, A.E., Radi, R., Mitochondrial calcium overload triggers complement-dependent superoxide-mediated programmed cell death in Trypanosoma cruzi (2009) Biochem. J., 418, pp. 595-604Jacobson, R.L., Doyle, R.J., Lectin-parasite interactions (1996) Parasitol. Today, 12 (2), pp. 55-61Jung, D.W., Bradshaw, P.C., Pfeiffer, D.R., Properties of a cyclosporin-insensitive permeability transition pore in yeast mitochondria (1997) J. Biol. Chem., 272 (34), pp. 21104-21112Kaplan, R.R., Pedersen, P.L., Characterization of phosphate efflux pathways in rat liver mitochondria (1983) J. Biochem., 212, pp. 279-288Kim, G.W., Kondo, T., Noshita, N., Chan, P.H., Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: Implications for the production and role of superoxide radicals (2002) Stroke, 33, pp. 809-815Kokoszka, J.E., Waymire, K.G., Levy, S.E., Sligh, J.E., Cai, J., Jones, D.P., Macgregor, G.R., Wallace, D.C., The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore (2004) Nature, 427, pp. 461-465Kowaltowski, A.J., Vercesi, A.E., Reactive oxygen generation by mitochondria (2001) Mitochondria in Pathogenesis, pp. 281-294. , Lemasters, J.J. & Nieminen, A.-L. (ed.), Kluwer Academic/Penum Publishers, New YorkKrauskopf, A., Eriksson, O., Craigen, W.J., Forte, M.A., Bernardi, P., Properties of the permeability transition in VDAC1(-/-) mitochondria (2006) Biochim. Biophys. Acta, 1757, pp. 590-595Kroemer, G., Galluzzi, L., Brenner, C., Mitochondrial membrane permeabilization in cell death (2007) Physiol. Rev., 87, pp. 99-163Lemasters, J.J., Theruvath, T.P., Zhong, Z., Nieminen, A.L., Mitochondrial calcium and the permeability transition in cell death (2009) Biochim. Biophys. Acta, 1787 (11), pp. 1395-1401Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275Martin, L.J., Mitochondrial and cell death mechanisms in neurodegenerative diseases (2010) Pharmaceuticals (Basel), 3, pp. 839-8915Moreno, S.N., Docampo, R., Vercesi, A.E., Calcium homeostasis in procyclic and bloodstream forms of Trypanosoma brucei. Lack of inositol 1,4,5-trisphosphate-sensitive Ca2+ release (1992) J. Biol. Chem., 267 (9), pp. 6020-6026Moreno, S.N., Docampo, R., Calcium regulation in protozoan parasites (2003) Curr. Opin. Microbiol., 6 (4), pp. 359-364Moreno, S.N., Vercesi, A.E., Pignataro, O.P., Docampo, R., Calcium homeostasis in Trypanosoma cruzi amastigotes: Presence of inositol phosphates and lack of an inositol 1,4,5-trisphosphate-sensitive calcium pool (1992) Mol. Biochem. Parasitol., 52, pp. 251-261Murphy, A.N., Bredesen, D.E., Cortopassi, G., Wang, E., Fiskum, G., Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria (1996) Proc. Natl Acad. Sci. USA, 93, pp. 9893-9898Opperdoes, F.R., Michels, P.A.M., Complex i of trypanosomatidae: Does it exist? (2008) Trends Parasitol, 24 (7), pp. 310-317Peloso, E.F., Gonçalves, C.C., Silva, T.M., Ribeiro, L.H., Piñeyro, M.D., Robello, C., Gadelha, F.R., Tryparedoxin peroxidases and superoxide dismutases expression as well as ROS release are related to Trypanosoma cruzi epimastigotes growth phases (2012) Arch. Biochem. Biophys., 520 (2), pp. 117-122Piacenza, L., Irigoín, F., Alvarez, M.N., Peluffo, G., Taylor, M.C., Kelly, J.M., Wilkinson, S.R., Radi, R., Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: Cytoprotective actions of mitochondrial iron superoxide dismutase overexpression (2007) Biochem. J., 403 (2), pp. 323-334Piacenza, L., Peluffo, G., Radi, R., L-arginine metabolism in Trypanosoma cruzi in the regulation of programmed cell death (2002) Methods Enzymol., 359, pp. 286-302Rasola, A., Sciacovelli, M., Pantic, B., Bernardi, P., Signal transduction to the permeability transition pore (2010) FEBS Lett., 584 (10), pp. 1989-1996Rizzuto, R., Pinton, P., Carrington, W., Fay, F.S., Fogarty, K.E., Lifshitz, L.M., Tuft, R.A., Pozzan, T., Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses (1998) Science, 280, pp. 1763-1766Ronchi, J.A., Vercesi, A.E., Castilho, R.F., Reactive oxygen species and permeability transition pore in rat liver and kidney mitoplasts (2011) J. Bioenerg. Biomembr., 43, pp. 709-715Rothfuchs, A.G., Roffê, E., Gibson, A., Cheever, A.W., Ezekowitz, R.A., Takahashi, K., Steindel, M., Báfica, A., Mannose-binding lectin regulates host resistance and pathology during experimental infection with Trypanosoma cruzi (2012) PLoS ONE, 7 (11), pp. e47835Souza, S.R., Dutra, R.F., Correia, M.T.S., Pessoa, M.M.A., Lima-Filho, J.L., Coelho, L.C.B.B., Electrochemical potential of free and immobilized Cratylia mollis seed lectin (2003) Bioresource Technol., 88, pp. 255-258Vaseva, A.V., Marchenko, N.D., Ji, K., Tsirka, S.E., Holzmann, S., Moll, U.M., P53 opens the mitochondrial permeability transition pore to trigger necrosis (2012) Cell, 149, pp. 1536-1548Velho, J.A., Okanobo, H., Degasperi, G.R., Matsumoto, M.Y., Alberici, L.C., Cosso, R.G., Oliveira, H.C., Vercesi, A.E., Statins induce calcium-dependent mitochondrial permeability transition (2006) Toxicology, 219 (13), pp. 124-132Vercesi, A.E., Bernardes, C.F., Hoffmann, M.E., Gadelha, F.R., Docampo, R., Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ (1991) J. Biol. Chem., 266 (22), pp. 14431-14434Vercesi, A.E., Hoffmann, M.E., Bernardes, C.F., Docampo, R., Regulation of intracellular calcium homeostasis in Trypanosoma cruzi. Effects of calmidazolium and trifluoperazine (1991) Cell Calcium, 12 (5), pp. 361-369Zhou, M., Diwu, Z., Panchuk-Voloshina, N., Haugland, R.P., A stable nonfluorescent derivative of resofurin for the fluorometric determination of trace hydrogen peroxide: Applications in detecting the activity of phagocyte NADPH oxidase and other oxidases (1997) Anal. Biochem., 253 (2), pp. 162-16

    Characterization Of The Intracellular Ca2+ Pools Involved In The Calcium Homeostasis In Herpetomonas Sp. Promastigotes

    No full text
    Trypanosomatids of the genus Herpetomonas comprises monoxenic parasites of insects that present proand opisthomastigotes forms in their life cycles. In this study, we investigated the Ca2+ transport and the mitochondrial bioenergetic of digitonin-permeabilized Herpetomonas sp. promastigotes. The response of promastigotes mitochondrial membrane potential to ADP, oligomycin, Ca2+, and antimycin A indicates that these mitochondria behave similarly to vertebrate and Trypanosoma cruzi mitochondria regarding the properties of their electrochemical proton gradient. Ca2+ transport by permeabilized cells appears to be performed mainly by the mitochondria. Unlike T. cruzi, it was not possible to observe Ca2+ release from Herpetomonas sp. mitochondria, probably due to the simultaneous Ca2+ uptake by the endoplasmic reticulum. In addition, a vanadate-sensitive Ca2+ transport system, attributed to the endoplasmic reticulum, was also detected. Nigericin (1 μM), FCCP (1 μM), or bafilomycin A1 (5 μM) had no effect on the vanadate-sensitive Ca2+ transport. These data suggest the absence of a Ca2+ transport mediated by a Ca2+/H+ antiport. No evidence of a third Ca2+ compartment with the characteristics of the acidocalcisomes described by A. E. Vercesi et al. (1994, Biochem. J. 304, 227-233) was observed. Thapsigargin and IP3 were not able to affect the vanadate-sensitive Ca2+ transport. Ruthenium red was able to inhibit the Ca2+ uniport of mitochondria, inducing a slow mitochondrial Ca2+ efflux, compatible with the presence of a Ca2+/H+ antiport. Moreover, this efflux was not stimulated by the addition of NaCl, which suggests the absence of a Ca2+/Na+ antiport in mitochondria. (C) 2000 Academic Press.38018591Camargo, E.P., Kastelein, P., Roitman, I., (1990) Parasitol. Today, 6, pp. 22-25Redman, C.A., Schineider, P., Mehlert, A., Ferguson, A.J., (1995) Biochem. J., 311, pp. 495-503Jankevicius, J.V., Jankevicius, S., Campaner, M., Conchon, I., Maeda, L.A., Teixeira, M.M.G., Freymuller, M., Camargo, E.P., (1989) J. Protozool., 36, pp. 265-271Attias, M., Roitman, I., Camargo, E.P., Dollet, M., De Souza, W., (1988) J. Protozool., 35, pp. 365-370Freymuller, E., Milder, R., Jankevicius, J.V., Jankevicius, S.I., Camargo, E.P., (1990) J. Protozool., 37, pp. 225-229Clapham, D.E., (1995) Cell, 80, pp. 259-268Docampo, R., Vercesi, A.E., (1989) J. Biol. Chem., 264, pp. 108-111Moreno, S.N.J., Docampo, R., Vercesi, A.E., (1992) J. Biol. Chem., 267, pp. 6020-6026Docampo, R., (1993) Biol. Res., 26, pp. 189-196Vercesi, A.E., Moreno, S.N.J., Docampo, R., (1994) Biochem. J., 304, pp. 227-233Docampo, R., Scott, D.A., Vescesi, A.E., Moreno, S.N., (1995) Biochem. J., 310, pp. 1005-1012Lu, H.G., Zhong, L., De Souza, W., Benchimol, M., Moreno, S.N.J., Docampo, R., (1998) Mol. Cell. Biol., 18, pp. 2309-2323Scott, D.A., Docampo, R., (1998) Biochem. J., 331, pp. 583-589Zhang, H.S., McDonald, T.V., Tanowitz, H.B., Wittner, M., Weiss, L.M., Bilezikian, J.P., Morris, S.A., (1998) J. Eukariot Microbiol., 45, pp. 80-86Gornall, A.G., Bardawill, C.J., David, M.M., (1949) J. Biol. Chem., 177, pp. 751-766Scarpa, A., (1979) Methods Enzymol., 56, pp. 301-338Docampo, R., Moreno, S.N.J., Mason, R.P., (1983) J. Biol. Chem., 258, pp. 14920-14925Moreno, S.N.J., Mason, R.P., Docampo, R., (1984) J. Biol. Chem., 259, pp. 14609-14616Vercesi, A.E., Bernardes, C.F., Hoffmann, M.E., Gadelha, F.R., Docampo, R., (1991) J. Biol. Chem., 266, pp. 14431-14434Docampo, R., Scott, D.A., Vercesi, A.E., Moreno, S.N.J., (1995) Biochem. J., 310, pp. 1005-1012Vercesi, A.E., Moreno, S.N.J., Docampo, R., (1994) Biochem. J., 304, pp. 227-233Scott, D.A., Moreno, S.N.J., Docampo, R., (1995) Biochem. J., 310, pp. 789-794Rooney, E.K., Gross, J.D., (1992) Proc. Natl. Acad. Sci. U.S.A., 89, pp. 8025-8029Gunter, T.E., Pfeiffer, D.R., (1990) Am. J. Physiol., 258, pp. C755-C786Gunter, K.K., Gunter, T.E., (1994) J. Bioenerg. Biomembr., 26, pp. 471-485Rizzuto, R., Bernardi, P., Favaron, M., Azzone, G.F., (1987) Biochem. J., 246, pp. 271-277Kowaltowski, A.J., (2000) Braz. J. Med. Biol. Res., 33, pp. 241-250Berrier, C., Coulombe, A., Szabo, I., Zoratti, M., Ghazi, A., (1992) Eur. J. Biochem., 206, pp. 559-565Biden, T.J., Prentki, M., Irvine, R.F., Berridge, M.J., Wollheim, C.B., (1984) Biochem. J., 223, pp. 467-473Blackford, S.B., Rae, P.A., Sandres, D., (1990) J. Biol. Chem., 265, pp. 9617-9620Burg, M., (1995) Am. J. Physiol., 268, pp. F983-F996Handler, J., Kwon, M.H., (1993) Am. J. Physiol., 265, pp. C1449-C1455Moreno, S.N.J., Vercesi, A.E., Pignataro, O.P., Docampo, R., (1992) Mol. Biochem. Parasitol., 52, pp. 251-262Ohsumi, Y., Anraku, Y., (1985) J. Biol. Chem., 258, pp. 5614-5617Oz, H.S., Wittner, M., Tanowitz, H.B., Bilezikian, Saxon, M., Morris, S.A., (1992) Exp. Parasitol., 74, pp. 390-399Prentki, M., Corkey, B.E., Matschinsky, F.M., (1985) J. Biol. Chem., 260, pp. 9185-9190Vercesi, A.E., Hoffman, M.E., Bernardes, C.F., Docampo, R., (1991) Cell Calcium, 12, pp. 361-369Vercesi, A.E., Moreno, S.N.J., Bernardes, C.F., Meinicke, A.R., Fernandes, E.C., Docampo, R., (1993) J. Biol. Chem., 268, pp. 8564-8568Moreno, S.N., Ip, H.S., Cross, G.A., (1991) Biochem. Parasitol., 46, pp. 265-274McCormack, J.G., Denton, R.M., (1986) Biochem. Soc. Trans., 14, pp. 227-230Carafoli, E., (1987) Annu. Rev. Biochem., 56, pp. 395-433Wingrove, D.E., Gunter, T.E., (1986) J. Biol. Chem., 261, pp. 15159-1516
    corecore