243 research outputs found

    On the energy leakage of discrete wavelet transform

    Get PDF
    The energy leakage is an inherent deficiency of discrete wavelet transform (DWT) which is often ignored by researchers and practitioners. In this paper, a systematic investigation into the energy leakage is reported. The DWT is briefly introduced first, and then the energy leakage phenomenon is described using a numerical example as an illustration and its effect on the DWT results is discussed. Focusing on the Daubechies wavelet functions, the band overlap between the quadrature mirror analysis filters was studied and the results reveal that there is an unavoidable tradeoff between the band overlap degree and the time resolution for the DWT. The dependency of the energy leakage to the wavelet function order was studied by using a criterion defined to evaluate the severity of the energy leakage. In addition, a method based on resampling technique was proposed to relieve the effects of the energy leakage. The effectiveness of the proposed method has been validated by numerical simulation study and experimental study

    Electron transport in the dye sensitized nanocrystalline cell

    Full text link
    Dye sensitised nanocrystalline solar cells (Gr\"{a}tzel cells) have achieved solar-to-electrical energy conversion efficiencies of 12% in diffuse daylight. The cell is based on a thin film of dye-sensitised nanocrystalline TiO2_2 interpenetrated by a redox electrolyte. The high surface area of the TiO2_2 and the spectral characteristics of the dye allow the device to harvest 46% of the solar energy flux. One of the puzzling features of dye-sensitised nano-crystalline solar cells is the slow electron transport in the titanium dioxide phase. The available experimental evidence as well as theoretical considerations suggest that the driving force for electron collection at the substrate contact arises primarily from the concentration gradient, ie the contribution of drift is negligible. The transport of electrons has been characterised by small amplitude pulse or intensity modulated illumination. Here, we show how the transport of electrons in the Gr\"{a}tzel cell can be described quantitatively using trap distributions obtained from a novel charge extraction method with a one-dimensional model based on solving the continuity equation for the electron density. For the first time in such a model, a back reaction with the I3_3^- ions in the electrolyte that is second order in the electron density has been included.Comment: 6 pages, 5 figures, invited talk at the workshop 'Nanostructures in Photovoltaics' to appear in Physica

    A Biased Review of Sociophysics

    Full text link
    Various aspects of recent sociophysics research are shortly reviewed: Schelling model as an example for lack of interdisciplinary cooperation, opinion dynamics, combat, and citation statistics as an example for strong interdisciplinarity.Comment: 16 pages for J. Stat. Phys. including 2 figures and numerous reference

    Unconventional Cosmology

    Full text link
    I review two cosmological paradigms which are alternative to the current inflationary scenario. The first alternative is the "matter bounce", a non-singular bouncing cosmology with a matter-dominated phase of contraction. The second is an "emergent" scenario, which can be implemented in the context of "string gas cosmology". I will compare these scenarios with the inflationary one and demonstrate that all three lead to an approximately scale-invariant spectrum of cosmological perturbations.Comment: 45 pages, 10 figures; invited lectures at the 6th Aegean Summer School "Quantum Gravity and Quantum Cosmology", Chora, Naxos, Greece, Sept. 12 - 17 2012, to be publ. in the proceedings; these lecture notes form an updated version of arXiv:1003.1745 and arXiv:1103.227

    Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research

    Get PDF
    Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes

    Measurement of angular parameters from the decay B⁰  → K0^{⁎0} μ⁺ μ⁻ in proton–proton collisions at √s 8 TeV

    Get PDF
    Angular distributions of the decay B⁰  → K0^{⁎0} μ⁺ μ⁻ are studied using a sample of proton–proton collisions at √s=8TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 20.5fb⁻¹ . An angular analysis is performed to determine the P₁ and P2˘7^{\u27}₅ parameters, where the P2˘7^{\u27}₅ parameter is of particular interest because of recent measurements that indicate a potential discrepancy with the standard model predictions. Based on a sample of 1397 signal events, the P₁ and P2˘7^{\u27}₅ parameters are determined as a function of the dimuon invariant mass squared. The measurements are in agreement with predictions based on the standard model

    Measurement of nuclear modification factors of Υ(1S), Υ(2S), and Υ(3S) mesons in PbPb collisions at √sNN = 5.02 TeV

    Get PDF

    Production of Λ⁺c_{c} baryons in proton-proton and lead-lead collisions at √S^{S}NN = 5.02 TeV

    Get PDF

    Search for MSSM Higgs bosons decaying to μ⁺μ⁻ in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at √s = 13 TeV

    Get PDF
    corecore