9 research outputs found

    Decreased adiponectin levels in familial combined hyperlipidemia patients contribute to the atherogenic lipid profile.

    No full text
    Contains fulltext : 48076.pdf (Publisher’s version ) (Open Access)Familial combined hyperlipidemia (FCH) is characterized by increased levels of total cholesterol, triglycerides, and/or apolipoprotein B. Other features of FCH are obesity and insulin resistance. Adiponectin is a secretory product of the adipose tissue. Low levels of adiponectin are associated with insulin resistance and accelerated atherosclerosis. The aim of this study was to determine whether decreased adiponectin levels are associated with FCH and its phenotypes. The study population comprised 644 subjects, including 158 patients with FCH. Serum adiponectin levels were determined using a commercially available ELISA. For both males and females, the mean adiponectin level (microg/ml) was significantly lower in FCH patients [2.0 (1.8-2.2) and 2.5 (2.3-2.8), respectively] compared with normolipidemic relatives [2.3 (2.2-2.5) and 3.1 (2.8-3.3), respectively] and spouses [2.4 (2.1-2.7) and 3.2 (2.8-3.6), respectively]. These differences remain significant after adjusting for waist circumference and insulin resistance. Low adiponectin level in FCH patients was a superior independent predictor of the atherogenic lipid profile, including high triglyceride levels, low HDL-cholesterol levels, and the amount of small, dense LDL present, compared with both obesity and insulin resistance. Low adiponectin levels may contribute to the atherogenic lipid profile in FCH, independent of insulin resistance and obesity, as measured by waist circumference. This finding implies a role of adipose tissue metabolism in the pathophysiology of FCH

    Investigation of nonlinear effects in glassy matter using dielectric methods

    No full text
    We summarize current developments in the investigation of glassy matter using nonlinear dielectric spectroscopy. This work also provides a brief introduction into the phenomenology of the linear dielectric response of glass-forming materials and discusses the main mechanisms that can give rise to nonlinear dielectric response in this material class. Here we mainly concentrate on measurements of the conventional dielectric permittivity at high fields and the higher-order susceptibilities characterizing the 3-omega and 5-omega components of the dielectric response as performed in our group. Typical results on canonical glass-forming liquids and orientationally disordered plastic crystals are discussed, also treating the special case of supercooled monohydroxy alcohols.Comment: 26 pages, 20 figure

    Genetic risk factors in Alzheimer's disease

    No full text
    corecore