543 research outputs found

    Stochastic perturbation of sweeping process and a convergence result for an associated numerical scheme

    Get PDF
    Here we present well-posedness results for first order stochastic differential inclusions, more precisely for sweeping process with a stochastic perturbation. These results are provided in combining both deterministic sweeping process theory and methods concerning the reflection of a Brownian motion. In addition, we prove convergence results for a Euler scheme, discretizing theses stochastic differential inclusions.Comment: 30 page

    Feedback stabilization and Lyapunov functions

    Get PDF
    International audienceGiven a locally defined, nondifferentiable but Lipschitz Lyapunov function, we construct a (discontinuous) feedback law which stabilizes the underlying system to any given tolerance. A further result shows that suitable Lyapunov functions of this type exist under mild assumptions. We also establish a robustness property of the feedback relative to measurement error commensurate with the sampling rate of the control im- plementation scheme

    Necessary and sufficient condition on global optimality without convexity and second order differentiability

    Get PDF
    The main goal of this paper is to give a necessary and sufficient condition of global optimality for unconstrained optimization problems, when the objective function is not necessarily convex. We use Gâteaux differentiability of the objective function and its bidual (the latter is known from convex analysis)

    Mass Transportation on Sub-Riemannian Manifolds

    Get PDF
    We study the optimal transport problem in sub-Riemannian manifolds where the cost function is given by the square of the sub-Riemannian distance. Under appropriate assumptions, we generalize Brenier-McCann's Theorem proving existence and uniqueness of the optimal transport map. We show the absolute continuity property of Wassertein geodesics, and we address the regularity issue of the optimal map. In particular, we are able to show its approximate differentiability a.e. in the Heisenberg group (and under some weak assumptions on the measures the differentiability a.e.), which allows to write a weak form of the Monge-Amp\`ere equation

    The boundary Riemann solver coming from the real vanishing viscosity approximation

    Full text link
    We study a family of initial boundary value problems associated to mixed hyperbolic-parabolic systems: v^{\epsilon} _t + A (v^{\epsilon}, \epsilon v^{\epsilon}_x ) v^{\epsilon}_x = \epsilon B (v^{\epsilon} ) v^{\epsilon}_{xx} The conservative case is, in particular, included in the previous formulation. We suppose that the solutions vϵv^{\epsilon} to these problems converge to a unique limit. Also, it is assumed smallness of the total variation and other technical hypotheses and it is provided a complete characterization of the limit. The most interesting points are the following two. First, the boundary characteristic case is considered, i.e. one eigenvalue of AA can be 00. Second, we take into account the possibility that BB is not invertible. To deal with this case, we take as hypotheses conditions that were introduced by Kawashima and Shizuta relying on physically meaningful examples. We also introduce a new condition of block linear degeneracy. We prove that, if it is not satisfied, then pathological behaviours may occur.Comment: 84 pages, 6 figures. Text changes in Sections 1 and 3.2.3. Added Section 3.1.2. Minor changes in other section

    Regularity of a kind of marginal functions in Hilbert spaces

    Get PDF
    We study well-posedness of some mathematical programming problem depending on a parameter that generalizes in a certain sense the metric projection onto a closed nonconvex set. We are interested in regularity of the set of minimizers as well as of the value function, which can be seen, on one hand, as the viscosity solution to a Hamilton-Jacobi equation, while, on the other, as the minimal time in some related optimal time control problem. The regularity includes both the Fréchet differentiability of the value function and the Hölder continuity of its (Fréchet) gradient

    Parallelization of the discrete gradient method of non-smooth optimization and its applications

    Full text link
    We investigate parallelization and performance of the discrete gradient method of nonsmooth optimization. This derivative free method is shown to be an effective optimization tool, able to skip many shallow local minima of nonconvex nondifferentiable objective functions. Although this is a sequential iterative method, we were able to parallelize critical steps of the algorithm, and this lead to a significant improvement in performance on multiprocessor computer clusters. We applied this method to a difficult polyatomic clusters problem in computational chemistry, and found this method to outperform other algorithms. <br /

    Singular Casimir Elements of the Euler Equation and Equilibrium Points

    Full text link
    The problem of the nonequivalence of the sets of equilibrium points and energy-Casimir extremal points, which occurs in the noncanonical Hamiltonian formulation of equations describing ideal fluid and plasma dynamics, is addressed in the context of the Euler equation for an incompressible inviscid fluid. The problem is traced to a Casimir deficit, where Casimir elements constitute the center of the Lie-Poisson algebra underlying the Hamiltonian formulation, and this leads to a study of the symplectic operator defining the Poisson bracket. The kernel of the symplectic operator, for this typical example of an infinite-dimensional Hamiltonian system for media in terms of Eulerian variables, is analyzed. For two-dimensional flows, a rigorously solvable system is formulated. The nonlinearity of the Euler equation makes the symplectic operator inhomogeneous on phase space (the function space of the state variable), and it is seen that this creates a singularity where the nullity of the symplectic operator (the "dimension" of the center) changes. Singular Casimir elements stemming from this singularity are unearthed using a generalization of the functional derivative that occurs in the Poisson bracket

    Crime as risk taking

    Get PDF
    Engagement in criminal activity may be viewed as risk-taking behaviour as it has both benefits and drawbacks that are probabilistic. In two studies, we examined how individuals' risk perceptions can inform our understanding of their intentions to engage in criminal activity. Study 1 measured youths' perceptions of the value and probability of the benefits and drawbacks of engaging in three common crimes (i.e. shoplifting, forgery, and buying illegal drugs), and examined how well these perceptions predicted youths' forecasted engagement in these crimes, controlling for their past engagement. We found that intentions to engage in criminal activity were best predicted by the perceived value of the benefits that may be obtained, irrespective of their probabilities or the drawbacks that may also be incurred. Study 2 specified the benefit and drawback that youth thought about and examined another crime (i.e. drinking and driving). The findings of Study 1 were replicated under these conditions. The present research supports a limited rationality perspective on criminal intentions, and can have implications for crime prevention/intervention strategies
    corecore