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Abstract. In this paper we consider a class of stochastic linear complementarity problems

(SLCPs) with finitely many realizations. We present a feasible semismooth Newton method

for this class of SLCPs by reformulating it as a constrained system of semismooth equations.

This method only solves one linear system of equations at each iteration and has nice global

and local convergence properties. Preliminary numerical results show that this method may

yield a solution with high safety for SLCPs.
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1 Introduction

Let (Ω,F ,P) be a probability space with Ω ⊆ <m. We suppose that the probability distribution

P is known. The stochastic linear complementarity problem (SLCP) [2, 3, 10, 6, 7] is to find an

x ∈ <n such that

x ≥ 0, F (x, ω) := M(ω)x + q(ω) ≥ 0, xT F (x, ω) = 0, (1.1)

where M(ω) ∈ <n×n and q(ω) ∈ <n for ω ∈ Ω, are random matrices and vectors.

If Ω only contains a single realization, then (1.1) reduces to the following standard linear

complementarity problem (LCP): Find a vector x ∈ <n such that

x ≥ 0, Mx + q ≥ 0, xT (Mx + q) = 0, (1.2)
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where M ∈ <n×n and q ∈ <n. We denote this problem as LCP(M, q). Over the last few decades,

there have been numerous publications on LCP(M, q). An excellent survey of the research in

this area prior to 1990 can be found in [5]. More recent work can be found in the recent book

[9] by Facchinei and Pang.

Problem (1.1) has been studied in [2, 3, 8, 10, 6, 7]. In particular, Chen and Fukushima [2]

have recently proposed an expected residual minimization (ERM) formulation which is to find

a vector x ∈ <n
+ that minimizes an expected residual function:

min
x∈<n

+

E
{‖Φ(x, ω)‖2

}
, (1.3)

where E stands for the expectation and the function Φ is defined as follows:

Φ(x, ω) :=




φ(F1(x, ω), x1)

φ(F2(x, ω), x2)
...

φ(Fn(x, ω), xn)




. (1.4)

Here, φ : <2 → < is an NCP function which has the property

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Lin and Fukushima [6] formulated (1.1) as a stochastic MPEC with recourse.

In this paper we consider the following class of stochastic linear complementarity problems

in which Ω only has finitely many elements. Let Ω = {ω1, ω2, ..., ωm}. Find an x ∈ <n such that

x ≥ 0, F (x, ωi) := M(ωi)x + q(ωi) ≥ 0, xT F (x, ωi) = 0, i = 1, 2, ..., m, m > 1. (1.5)

In this paper we suppose

pi = P{ωi ∈ Ω} > 0, i = 1, 2, ...,m.

Let F̄ (x) be the expectation function of the random function F (x, ω). Then,

F̄ (x) = E[F (x, ω)] = M̄x + q̄,

where

M̄ =
m∑

i=1

piM(ωi) and q̄ =
m∑

i=1

piq(ωi).

We call (1.5) a monotone SLCP if M̄ is a positive semidefinite matrix. Clearly, the problem

(1.5) is equivalent to (1.6) and (1.7).

x ≥ 0, M̄x + q̄ ≥ 0, xT (M̄x + q̄) = 0. (1.6)

M(ωi)x + q(ωi) ≥ 0, i = 1, 2, ..., m. (1.7)
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(1.6) is a standard linear complementarity problem (LCP) and we denote it as LCP(M̄, q̄).

In this paper we present a feasible semismooth Newton method for (1.5). This method

may be viewed as the feasible semismooth asymptotically Newton method [19] applied to a

reformulation of (1.5) as a constrained system of semismooth equations. This reformulation is

introduced in Section 2, where we also state some preliminary and mostly known results about

this reformulation. The algorithm is stated in detail in Section 3, whereas numerical results are

given in Section 4. We then conclude this paper with some final remarks in Section 5.

Some words about our notation. Throughout this paper, ‖ · ‖ denotes the Euclidean norm.

For a continuously differentiable function Φ : <n → <n, we denote the Jacobian of Φ at x ∈ <n

by Φ′(x). Let F : <n → <m be a locally Lipschitzian vector function. By Rademacher’s theorem,

F is differentiable almost everywhere. Let DF denote the set of points where F is differentiable.

Then the B-subdifferential of F at x ∈ <n is defined to be

∂BF (x) = { lim
xk→x

xk∈DF

∇F (xk)T }, (1.8)

while Clarke’s generalized Jacobian [4] of F at x is defined to be

∂F (x) = conv∂BF (x). (1.9)

Qi [16] and Sun and Han [18] introduced a generalized Jacobian ∂C , defined by

∂CF (x) = ∂F1(x)× · · · × ∂Fm(x). (1.10)

By (1.8) - (1.10), for any x,

∂BF (x) ⊆ ∂F (x) ⊆ ∂CF (x). (1.11)

F is called semismooth at x if F is directionally differentiable at x and for all V ∈ ∂F (x + d)

and d → 0,

F ′(x; d) = V d + o(‖d‖); (1.12)

F is called strongly semismooth at x if F is semismooth at x and for all V ∈ ∂F (x + d) and

d → 0,

F ′(x; d) = V d + O(‖d‖2); (1.13)

F is called a (strongly) semismooth function if it is (strongly) semismooth everywhere. Here,

o(‖d‖) stands a vector function of d, satisfying

lim
d→0

o(‖d‖)
‖d‖ = 0,
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while O(‖d‖2) stands a vector function of d, satisfying

‖O(‖d‖2)‖ ≤ c‖d‖2

for all d satisfying ‖d‖ ≤ δ, and some c > 0 and δ > 0.

2 A Constrained Semismooth Equation (CSE) Reformulation

In this section, we reformulate the problem (1.5) as a constrained system of semismooth equa-

tions and give some properties for this system of semismoth equations.

(1.6) is a standard linear complementarity problem (LCP) and it can be reformulated as

a system of semismooth equations by an NCP function. Over the last decade, various NCP

functions have been studied for solving complementarity problems [9, 17]. Two frequently used

NCP functions are the “min” function

φmin(a, b) = min(a, b)

and the Fischer-Burmeister (FB) function [12]

φFB(a, b) = a + b−
√

a2 + b2.

Let

φα(a, b) = a + b−
√

a2 + b2 + αa+b+, α ≥ 0, (2.14)

where for any scalar c, c+ = max{0, c}. Obviously,

φ0(a, b) = φFB(a, b).

For α > 0, this function is an equivalent form of the penalized Fischer-Burmeister function [1].

It has been showed in [1] that this function has a strong result about the level set.

Proposition 2.1 [1, 17] φα(a, b) has the following properties:

1. φα(a, b) is an NCP function.

2. φα(a, b) is strongly semismooth on <2.

3. φα(a, b)2 is continuously differentiable on <2.

4



4. The generalized gradient ∂φα(a, b) of φα at a point (a, b) ∈ <2 is equal to the set of all

(va, vb) such that

(va, vb) =





(1− a√
a2+b2

, 1− b√
a2+b2

) + α(b+∂a+, a+∂b+) if (a, b) 6= (0, 0),

(1− ξ, 1− η) if (a, b) = (0, 0),
(2.15)

where (ξ, η) is any vector satisfying
√

ξ2 + η2 ≤ 1 and

∂c+ =





1 if c > 0,

[0, 1] if c = 0,

0 if c < 0.

Let

Φα(x) :=




φα((M̄x + q̄)1, x1)

φα((M̄x + q̄)2, x2)
...

φα((M̄x + q̄)n, xn)




. (2.16)

Then x is a solution of (1.6) if and only if Φα(x) = 0. Define

Ψα(x) =
1
2
‖Φ(x)‖2.

Then solving (1.6) is equivalent to finding a global solution of the following minimization prob-

lem:

min
x∈<n

Ψα(x). (2.17)

Proposition 2.2 [1, 17] The function Ψα has the following properties:

1. Ψα(x) is continuously differentiable on <n.

2. If LCP(M̄, q̄) has a strictly feasible solution, then, for all c ≥ 0, the level sets

Lα(c) = {x ∈ <n : Ψα(x) ≤ c}

are bounded.

By introducing a slack variable y = [yT
1 , yT

2 , ..., yT
m]T ∈ <mn, where yi ∈ <n, i = 1, 2, ..., m,

(1.6) and (1.7) can be written as the following system of nonsmooth equations with nonnegative

constraints:

H(x, y) = 0, y ≥ 0, (2.18)
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where

H(x, y) =




Φα(x)

M(ω1)x + q(ω1)− y1

M(ω2)x + q(ω2)− y2

...

M(ωm)x + q(ωm)− ym




.

The system H(x, y) = 0 has (m + 1)n equations with (m + 1)n unknowns. Problem (1.5) may

have no solution. If (1.5) has a solution, then solving (1.5) is equivalent to solving (2.18).

Proposition 2.3 The function H is strongly semismooth.

Proof. By Theorem 19 [13] and Proposition 2.1, the function H is strongly semismooth.

Suppose that x∗ is a solution of LCP(M̄, q̄). Define

I = {i : x∗i > 0, (M̄x∗ + q̄)i = 0},
J = {i : x∗i = 0, (M̄x∗ + q̄)i = 0},
K = {i : x∗i = 0, (M̄x∗ + q̄)i > 0}.

LCP(M̄, q̄) is said to be R-regular at x∗ if M̄II is nonsingular and its Schur complement M̄JJ −
M̄JIM̄−1

II M̄IJ is a P -matrix [9].

Proposition 2.4 [1] Suppose that LCP(M̄, q̄) is R-regular at a solution x∗. Then all VΦ ∈
∂CΦα(x∗) = ∂Φα,1(x∗)× ∂Φα,2(x∗)× ...× ∂Φα,n(x∗) are nonsingular.

For any (x, y) ∈ <(m+1)n, we have that

∂CH(x, y) =








VΦ 0 0 · · · 0

M(ω1) −I 0 · · · 0

M(ω2) 0 −I · · · 0
...

...
...

. . .
...

M(ωm) 0 0 · · · −I




: VΦ ∈ ∂CΦα(x)





,

where I is the n×n identity matrix. Hence, by Proposition 2.4, we have the following proposition.

Proposition 2.5 Suppose (x∗, y∗) is a solution of (2.18) and LCP(M̄, q̄) is R-regular at x∗.

Then all VH ∈ ∂CH(x∗, y∗) are nonsingular.

For any x ∈ <n, an element of the C-subdifferential ∂CΦα(x) can be calculated as follows [1].
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Algorithm 2.1 (Procedure to calculate an element VΦ ∈ ∂CΦα(x))

(S.0) Let x ∈ <n be given, and let VΦ,i denote the ith row of a matrix VΦ ∈ <n×n.

(S.1) Set S1 = {i : xi = (M̄x + q̄)i = 0} and S2 = {i : xi > 0, (M̄x + q̄)i > 0}.

(S.2) Set c ∈ <n such that ci = 0 for i 6∈ S1 and ci = 1 for i ∈ S1.

(S.3) For i ∈ S1, set

VΦ,i =
(

1− ci

‖(ci, M̄ic)‖
)

eT
i +

(
1− M̄ic

‖(ci, M̄ic)‖
)

M̄i,

where M̄i is the ith row of the matrix M̄ .

(S.4) For i ∈ S2, set

VΦ,i =
(

1− ci

‖(ci, (M̄x + q̄)i)‖
+ α(M̄x + q̄)i

)
eT
i +

(
1− (M̄x + q̄)i

‖(ci, (M̄x + q̄)i)‖
+ αxi

)
M̄i.

(S.5) For i 6∈ S1 ∪ S2, set

VΦ,i =
(

1− ci

‖(ci, (M̄x + q̄)i)‖
)

eT
i +

(
1− (M̄x + q̄)i

‖(ci, (M̄x + q̄)i)‖
)

M̄i.

3 A Feasible Semismooth Newton Algorithm

Let z = (x, y) ∈ <(m+1)n and define a merit function of (2.18) by

θ(z) =
1
2
‖H(z)‖2.

If (1.5) has a solution, then solving (2.18) is equivalent to finding a global solution of the following

minimization problem:

min θ(z)

s.t. z ≥ 0. (3.19)

z is a stationary point of (3.19) if it satisfies

ΠZ [z −∇θ(z)]− z = 0, (3.20)

where ΠZ(·) is an orthogonal projection operator onto Z = {z ∈ <(m+1)n : z ≥ 0}. Clearly,

(3.20) is equivalent to the following complementarity system:

zT∇θ(z) = 0,∇θ(z) ≥ 0, z ≥ 0. (3.21)
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Proposition 3.1 The merit function θ has the following properties:

1. θ(z) is continuously differentiable on <(m+1)n with ∇θ(z) = V T
H H(z) for any VH ∈ ∂CH(z).

2. If LCP(M̄, q̄) has a strictly feasible solution, then for all c ≥ 0, the level sets

L(c) = {z ∈ <(m+1)n : θ(z) ≤ c}

are bounded.

Proof. By using Proposition 2.2, this proposition holds.

For some monotone SLCPs, a stationary point of (3.19) may not be a solution. See the

following example.

Example 3.1. Let n = 1, m = 2, Ω = {ω1, ω2} = {0, 1}, M(ω1) = M(ω2) = 1, q(ω1) = 1,

q(ω2) = −1, and pi = P{ωi ∈ Ω} = 0.5, i = 1, 2.

Clearly, Example 3.1 is a monotone SLCP and all points x ≥ 1 are feasible, but this example

has no solution. By simple computation, we have

H(x, y1, y2) =




2x +
√

2|x|+ α(x+)2

x + 1− y1

x− 1− y2




and (0, 1, 0) is a stationary point of the following constrained programming problem:

min
1
2
‖H(x, y1, y2)‖2

s.t. x ≥ 0, y1 ≥ 0, y2 ≥ 0.

However, x = 0 is not a solution of Example 3.1.

In the following proposition, we give some conditions under which a stationary point of (3.19)

is a solution of (1.5).

Proposition 3.2 For monotone problem (1.5), let z∗ = (x∗, y∗) be a stationary point of (3.19).

If M(ωi)x∗ + q(ωi)− y∗i = 0, i = 1, 2, ..., m, then x∗ is a solution.

Proof. Suppose that z∗ = (x∗, y∗) be a stationary point of (3.19). If M(ωi)x∗ + q(ωi) − y∗i =

0, i = 1, 2, ..., m, then, by (3.21), we have x∗ is the stationary point of the following problem:

min{Ψα(x) : x ≥ 0}.

Similar to the proof of Theorem 3 [11], we have x∗ is a solution of Ψα(x) = 0. Thus x∗ is a

solution of (1.5).

Now we state a feasible semismooth Newton algorithm for solving (3.19).
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Algorithm 3.1

Step 0. Choose constants η, ρ, σ ∈ (0, 1), p1 > 0 and p2 > 2. Let z0 ∈ Z and set k := 0.

Step 1. Choose V k
H ∈ ∂CH(zk) and compute ∇θ(zk) = (V k

H)T H(zk). If zk is a stationary point,

stop. Otherwise let

dk
G = −γk∇θ(zk),

where

γk = min
{

1,
ηθ(zk)

‖∇θ(zk)‖2

}

and go to Step 2.

Step 2. Compute dk
N by solving the following linear system:

H(zk) + V k
Hd = 0. (3.22)

If (3.22) has no solution or

−∇θ(zk)T dk
N < p1

∥∥∥dk
N

∥∥∥
p2

,

then let dk
N := dk

G.

Step 3. Let mk be the smallest nonnegative integer m satisfying

θ(zk + d̄k(ρm)) ≤ θ(zk) + σ∇θ(zk)T d̃k
G(ρm), (3.23)

where for any λ ∈ (0, 1],

d̄k(λ) = τ∗(λ)d̃k
G(λ) + [1− τ∗(λ)]d̃k

N (λ). (3.24)

Here

d̃k
G(λ) := ΠZ(zk + λdk

G)− zk, d̃k
N (λ) := ΠZ(zk + λdk

N )− zk, (3.25)

τ∗(λ) is a solution of the following minimization problem:

min
τ∈[0,1]

1
2
‖H(zk) + V k

H [τ d̃k
G(λ) + (1− τ)d̃k

N (λ)]‖2.

Let λk = ρmk and zk+1 = zk + d̄k(λk).

Step 4. Set k := k + 1 and go to Step 1.
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Remark 1. (a) For a constrained system of semismooth equations, some methods have been

proposed in [11, 14, 19]. Algorithm 3.1 was proposed in [19] to solve constrained system of

semismooth equations. From [19], we have

τ∗(λ) = max{0, min{1, τ(λ)}}, (3.26)

where τ(λ) is defined as

τ(λ) =





0, if d̃k
G(λ)− d̃k

N (λ) = 0,

− [H(wk) + V k
H d̃k

N (λ)]T V k
H [d̃k

G(λ)− d̃k
N (λ)]

‖V k
H [d̃k

G(λ)− d̃k
N (λ)]‖2

, otherwise.

(b) For Algorithm 3.1, the main computation work is in Step 2. The linear system in Step

2 can be solved as follows. Firstly, we solve the following linear system to get dk
Φ:

V k
Φdk

Φ + Φα(xk) = 0. (3.27)

Let dk
i = M(ωi)dk

Φ +M(ωi)xk + q(ωi)− yk
i , i = 1, 2, ..., m. Then, dk

N = [(dk
Φ)T , (yk

1 )T , ..., (yk
m)T ]T .

Note that (3.27) is an n× n linear system. If n is not large, then the linear system in Step

2 of Algorithm 3.1 can be solved easily.

The convergence properties of this method are summarized in the following theorem.

Theorem 3.1 The following results holds for Algorithm 3.1.

1. The algorithm is well defined for a monotone SLCP (1.5). If the algorithm does not stop

at a stationary point in finite steps, an infinite sequence {zk} is generated with {zk} ⊂ Z.

2. Any accumulation point of the sequence {zk} is a stationary point of (3.19). In particular,

if LCP(M̄, q̄) has a strictly feasible solution, such an accumulation point exists.

3. Let z∗ = (x∗, y∗) be any accumulation point. If M(ωi)x∗ + q(ωi) − y∗i = 0, i = 1, 2, ...,m,

then x∗ is a solution of (1.5).

4. If, in addition, x∗ is an R-regular solution of LCP(M̄, q̄), then the whole sequence generated

by Algorithm 3.1 converges to z∗ and the rate of convergence is Q-quadratic.

Proof. These results can be proved by following from Propositions 2.5, 3.1 and 3.2 and the same

arguments used for Theorems 4.1 and 4.2 of [19]. Instead of using Qi’s [15] theory on the B-

subdifferential, however, we have to apply the local convergence results for the C-subdifferential,

also due to Qi [16].
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Remark 2. Algorithm 3.1 can produce a stationary point x∗ of (3.19). If x∗ is a global solution

of (3.19), then x∗ can be considered as a solution of (1.5) with the measure of θ(z) defined in

(3.19). If x∗ is not a global solution of (3.19), we do not know what the stationary point x∗ of

(3.19) means in SLCP. We leave it as our future research topic.

4 Numerical Results

In this section we report numerical results for the algorithm proposed in Section 3. We imple-

mented the algorithm in MATLAB and tested it on some random generated examples. Now we

give a procedure to generate a test problem of monotone SLCP (1.5). This procedure is from

[3]. We suppose that pj = P{ωj ∈ Ω} = 1/m, j = 1, 2, ..., m.

Procedure 1.

1. Randomly generate a vector x̂ ∈ <n that has nx(< n) elements are in (0, c1), c1 > 0, and

other elements are 0. Let J = {i : x̂i > 0}.

2. Generate a diagonal matrix D whose elements are determined as

Dii =





1/µ i = 1

µλi i = 2, 3, ..., n− 1

µ i = n,

where µ > 0 and λi, i = 2, 3, ..., n− 1 are uniform variate in the interval (−1, 1).

3. Generate a random orthogonal matrix U ∈ <n×n by using the singular value decomposition

of a random matrix, and let M̄ = UDUT .

4. Generate m random matrices Bj ∈ <n×n, j = 1, 2, ..., m whose elements are in the interval

(0, 1). Set

M j = M(ωj) = M̄ + c2(Bj −Bm−j+1), j = 1, 2, ..., m,

where c2 > 0.

5. For each j = 1, 2, ...,m, let nI be the number of elements in the index set Ij = {i :

x̂i = 0, [M(ωj)x̂ + q(ωj)]i > 0} and nK be the number of elements in the index set

Kj = {i : x̂i = 0, [M(ωj)x̂ + q(ωj)]i = 0}. Set

qj
i = [q(ωj)]i =





(−M j x̂)i i ∈ Kj

(−M j x̂ + c3v
j)i i ∈ J

(−M j x̂ + c4v
j)i i ∈ Ij ,

11



where c3, c4 ≥ 0 and vj ∈ <n is a random vector whose elements are in the interval (0, 1).

Obviously, for the above random generated test problem, if c3 = 0 then x̂ is a solution. If c3 > 0

then the test problem may have no solution.

Throughout our computational experiments, the parameters used in Algorithm 3.1 are as

follows:

α = 10, η = 0.9, ρ = 0.5, σ = 10−4, p1 = 10−10 and p2 = 2.1.

We terminated the iteration if

θ(zk) ≤ 10−12 or ‖∇(zk)‖ ≤ 10−10 or kmax = 100.

We first tested Algorithm 3.1 on some random generated problems with c3 = 0 by Procedure 1

with different parameters (n,m, µ, c1, c2, c4) and starting points x0 = le, where l = 1, 10, 20, 30,

40, 50 and e is the n-dimensional vector of ones. These random generated problems can be

reformulated as an ERM problem (1.3) in which the expected residual function is defined by

the penalized Fischer-Burmeister function defined in (2.14). The ERM problem is a constrained

optimization problem, so it can be solved by using fmincon in the Matlab (version 7) tool box

for constrained optimization. We also tested fmincon on these random generated problems.

Since c3 = 0, these random generated problems have a solution. We have observed that for

each starting point Algorithm 3.1 can compute a solution in less than 20 iterations. However,

fmincon only can find a local minimizer of the ERM problem (1.3).

Next, for each fixed (n, nx, c2, c3) with c3 > 0, we used Procedure 1 to generate some test

problems with the following parameters:

c1 = 20, µ = 10, c4 = 15,m = 100.

Since c3 > 0, these test problem may have no solutions. For these test problems, a measure of

optimality and feasibility can be defined as in [3] as follows:

Γ(x) =
m∑

i=1

[‖min(0,M(ωi)x + q(ωi))‖+ xT (M(ωi)x + q(ωi))+], x ∈ <n
+. (4.28)

Clearly, if x∗ is a solution of the problem (1.5), then Γ(x∗) = 0. Let

Op(x) =
m∑

i=1

xT (M(ωi)x + q(ωi))+, x ∈ <n
+ (4.29)

and

Fe(x) =
m∑

i=1

‖min(0,M(ωi)x + q(ωi))‖, x ∈ <n
+. (4.30)
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Here, the function Op(x) is a measure of optimality and the function Fe(x) is a measure of

feasibility. For these random generated test problems, we use fmincon to get solutions of their

ERM formulations. Their CSE reformulations are solved by using Algorithm 3.1. The test

results are summarized in Table 1. In Table 1, the random generated test problems are denoted

as (n, nx, c2, c3, le), where le means that the starting point is le for Algorithm 3.1 and fmincon.

x1 and x2 are the computed solutions by fmincon and Algorithm 3.1, respectively.

The results reported in Table 1 show that as to the measure of optimality and feasibility

Γ(·), x2 dominates x1 in most cases. As to the measure of optimality Op(·), x1 dominates x2

in most cases, whereas x2 dominates x1 in most cases as to the measure of feasibility Fe(·).
From these results, we may conclude that the CSE formulation can yield a solution with a nice

property in regard to the measure of feasibility, compared with the ERM formulation.

In many engineering and economic applications of SLCP, the inequality F (x, ω) = M(ω)x+

q(ω) ≥ 0 describes the safety of the system, and the guarantee of safety is critically important.

For these kinds of problems, the CSE formulation may yield a solution with high safety.

The numerical tests reported in the paper are very preliminary. Further experience with

testing and with actual applications will be necessary and we leave it as our future research

topic.
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Problem fmincon Algorithm 3.1

(n, nx, c2, c3, le) Fe(x1) Op(x1) Γ(x1) Fe(x2) Op(x2) Γ(x2)

(30, 10, 20, 10, e) 6.17e4 4.87e2 6.22e4 3.09e1 2.75e4 2.75e4

(30, 10, 20, 10, 10e) 5.67e4 3.78e4 9.44e4 9.33e2 3.62e4 3.71e4

(30, 10, 20, 10, 20e) 6.17e4 6.28e2 6.23e4 3.09e1 2.75e4 2.75e4

(30, 10, 20, 10, 30e) 6.17e4 6.85e2 6.24e4 3.37e2 2.86e4 2.89e4

(30, 10, 20, 10, 40e) 6.17e4 6.85e2 6.24e4 6.06e2 3.07e4 3.13e4

(30, 10, 20, 10, 50e) 6.17e4 6.06e2 6.23e4 3.09e1 2.75e4 2.75e4

(30, 10, 10, 10, e) 2.73e4 3.95e2 2.77e4 4.97e1 2.25e4 2.26e4

(30, 10, 10, 10, 10e) 1.62e4 4.44e4 6.06e4 4.97e1 2.25e4 2.26e4

(30, 10, 10, 10, 20e) 2.74e4 3.27e2 2.77e4 4.97e1 2.25e4 2.26e4

(30, 10, 10, 10, 30e) 2.74e4 2.31e2 2.76e4 4.97e1 2.25e4 2.26e4

(30, 10, 10, 10, 40e) 2.74e4 3.27e2 2.77e4 4.97e1 2.25e4 2.26e4

(30, 10, 10, 10, 50e) 2.74e4 1.77e2 2.76e4 2.53e2 2.24e4 2.27e4

(30, 10, 10, 5, e) 3.13e4 3.82e2 3.17e4 2.77e1 1.41e4 1.41e4

(30, 10, 10, 5, 10e) 2.32e4 8.04e4 1.04e5 6.10e2 1.93e4 1.99e4

(30, 10, 10, 5, 20e) 3.13e4 3.82e2 3.17e4 2.69e2 1.53e4 1.55e4

(30, 10, 10, 5, 30e) 3.13e4 3.82e2 3.17e4 6.42e2 2.12e4 2.18e4

(30, 10, 10, 5, 40e) 3.13e4 1.88e2 3.15e4 2.77e1 1.41e4 1.41e4

(30, 10, 10, 5, 50e) 3.13e4 3.82e2 3.17e4 2.77e1 1.41e4 1.41e4

(30, 10, 0, 5, e) 3.52e2 4.32e0 3.57e2 4.04e1 5.46e3 5.50e3

(30, 10, 0, 5, 10e) 3.52e2 4.32e0 3.57e2 3.92e1 5.77e3 5.80e3

(30, 10, 0, 5, 20e) 3.52e2 4.32e0 3.57e2 4.04e1 5.46e3 5.50e3

(30, 10, 0, 5, 30e) 3.52e2 4.32e0 3.57e2 4.04e1 5.46e3 5.50e3

(30, 10, 0, 5, 40e) 1.88e3 1.13e5 1.15e5 4.26e1 5.77e3 5.82e3

(30, 10, 0, 5, 50e) 1.44e3 2.03e5 2.04e5 4.04e1 5.46e3 5.50e3

Table 1: Test results for Algorithm 3.1 and fmincon
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Problem fmincon Algorithm 3.1

(n, nx, c2, c3, le) Fe(x1) Op(x1) Γ(x1) Fe(x2) Op(x2) Γ(x2)

(60, 20, 20, 10, e) 1.44e5 1.98e3 1.46e5 4.25e3 1.35e5 1.40e5

(60, 20, 20, 10, 10e) 1.19e5 4.86e5 6.05e5 3.15e3 1.17e5 1.20e5

(60, 20, 20, 10, 20e) 1.44e5 4.41e2 1.44e5 3.79e3 1.20e5 1.24e5

(60, 20, 20, 10, 30e) 1.44e5 2.08e2 1.44e5 6.07e3 1.75e5 1.82e5

(60, 20, 20, 10, 40e) 1.44e5 1.28e2 1.44e5 2.10e3 9.59e4 9.80e4

(60, 20, 20, 10, 50e) 1.44e5 9.15e2 1.45e5 9.15e3 2.48e5 2.57e5

(60, 20, 10, 10, e) 5.64e4 8.21e2 5.72e4 1.59e3 7.12e4 7.28e4

(60, 20, 10, 10, 10e) 7.04e4 3.29e6 3.36e6 9.31e2 5.58e4 5.67e4

(60, 20, 10, 10, 20e) 5.64e4 7.50e2 5.71e4 2.21e3 7.82e4 8.04e4

(60, 20, 10, 10, 30e) 5.63e4 8.76e2 5.72e4 2.50e3 8.30e4 8.55e4

(60, 20, 10, 10, 40e) 5.64e4 4.09e2 5.68e4 7.60e2 5.64e4 5.72e4

(60, 20, 10, 10, 50e) 5.64e4 7.92e1 5.65e4 8.60e2 5.68e4 5.77e4

(60, 20, 10, 5, e) 6.11e4 1.09e3 6.22e4 5.75e2 3.34e4 3.40e4

(60, 20, 10, 5, 10e) 7.52e2 3.38e4 3.46e4 1.39e3 4.73e4 4.87e4

(60, 20, 10, 5, 20e) 6.11e4 8.04e2 6.19e4 6.80e1 2.75e4 2.75e4

(60, 20, 10, 5, 30e) 6.12e4 6.56e2 6.18e4 7.64e2 3.73e4 3.80e4

(60, 20, 10, 5, 40e) 6.12e4 5.85e2 6.17e4 7.67e2 3.82e4 3.90e4

(60, 20, 10, 5, 50e) 6.12e4 2.68e2 6.14e4 1.03e3 4.31e4 4.42e4

(60, 20, 0, 5, e) 5.93e2 7.27e2 1.32e3 6.27e1 1.14e4 1.15e4

(60, 20, 0, 5, 10e) 5.44e2 2.12e1 5.65e2 6.60e1 1.91e4 1.91e4

(60, 20, 0, 5, 20e) 8.64e2 4.05e2 1.27e3 6.27e1 1.14e4 1.15e4

(60, 20, 0, 5, 30e) 5.60e2 2.97e1 5.90e2 6.27e1 1.14e4 1.15e4

(60, 20, 0, 5, 40e) 7.46e2 1.45e5 1.45e5 6.31e1 1.17e4 1.17e4

(60, 20, 0, 5, 50e) 6.11e2 5.34e1 6.65e2 6.27e1 1.14e4 1.15e4

Table 1 (continued): Test results for Algorithm 3.1 and fmincon

5 Conclusions

In this paper we have presented a feasible semismooth Newton method for a class of stochastic

linear complementarity problems (SLCPs) with finitely many realizations by reformulating it

as a constrained system of semismooth equations (CSE). Under some standard assumptions,

this method has nice global and local superlinear convergence properties. Compared with the
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method given by Chen and Fukushima [2], our proposed method can produce solutions with

high safety for SLCPs.

For (1.1) with Ω having infinitely many elements, a possible way to find an approximate

solution of (1.1) is to solve the following deterministic problem: Find an x ∈ <n such that

x ≥ 0, F (x, ωi) := M(ωi)x + q(ωi) ≥ 0, xT F (x, ωi) = 0, i ∈ ΩN , (5.31)

where ΩN = {ω1, ω2, ..., ωN} is a large sample of Ω. Clearly, (5.31) can be solved by the proposed

method in this paper when n is not too large. An immediate concern is how to choose the sample

ΩN such that the solution of (5.31) approaches that of (1.1). We leave it as our future research

topic.
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