47 research outputs found

    GABAergic presubicular projections to the medial entorhinal cortex of the rat

    Get PDF
    We characterized presubicular neurons giving rise to bilateral projections to the medial entorhinal cortex (MEA) of the rat. Retrograde labeling of presubiculo–entorhinal projections with horseradish peroxidase and subsequent GABA immunocytochemistry revealed that 20–30 % of the ipsilaterally projecting neurons are GABAergic. No GABAergic projections to the contralateral MEA were observed. GABAergic projection neurons were observed only in the dorsal part of the presubiculum, which, when taking into account the topography of presubicular projections to MEA, indicates that only the dorsal part of MEA receives GABAergic input. The GABAergic projection neurons constitute �30-40 % of all GABAergic neurons present in the superficial layers of the dorsal presubiculum. Using doublelabel fluorescent retrograde tracing, we found that the ipsilateral and contralateral presubiculo–entorhinal projections originat

    Use of peroxidase substrate Vector VIP for multiple staining in light microscop

    Get PDF
    The study of the distribution of a fiber input to a particular brain area and the visualization of the anatomical relationships of that input with both projection- and interneurons, requires a triple-staining that allows the unequivocal distinction of each of the three components in one and the same histological section. In this regard, we investigated the properties of a recently introduced peroxidase chromogen, VIP (V-VIP; Vector Labs) in combination with two traditional substrates, standard diaminobenzidine (DAB, brown precipitate) and nickel-enhanced DAB (DAB-Ni, black). In rats, the anterograde tracer biotinylated dextran amine (BDA) and the retrograde tracer fluorogold (FG) were injected in the perirhinal cortex and hippocampus, respectively. Transported BDA was detected with an avidin-biotin-peroxidase complex, whereas the transported FG was detected via a PAP method. Tracing with BDA and FG was combined with parvalbumin- or calbindin-immunocytochemistry. We compared various combinations and staining sequences. The best results were obtained with a staining sequence comprising first the BDA stain with DAB-Ni as chromogen, second the FG protocol with the chromogen DAB and finally, parvalbumin- or calbinding-immunocytochemistry using the chromogen V-VIP. The order with which the chromogens were applied appeared to be critical. Partial or even total loss of V-VIP reaction product has been observed after standard dehydration in ethanol. As an alternative, a quick dehydration procedure in toluene yields much better staining. Colour separation is excellent and the sensitivity is high. This procedure may also be used for detection of any other combination of three different labels, taking the usual care to avoid cross-reactivity between antibodies

    Multiple axonal tracing: simultaneous detection of three tracers in the same section

    Get PDF
    Multiple neuroanatomical tract-tracing methods are important tools for elucidating the connectivity between different populations of neurons. Evaluation of the question as to whether two specific fiber inputs converge on a particular, identified population of projection neurons requires the application of a triple-staining procedure that allows the unequivocal detection of three markers in a single section. The present report deals with a combination of tracing methods using anterogradely transported Phaseolus vulgaris leucoagglutinin and biotinylated dextran amine in conjunction with retrogradely transported Fluoro-Gold. These tracers were simultaneously detected according to a three-color paradigm, which includes the use of three different peroxidase substrates (nickel-enhanced diaminobenzidine, diaminobenzidine, and Vector VIP), thus resulting in three distinct precipitates: black, brown, and purple. We illustrate this method by showing convergence of projections arising from neurons located in two separate basal ganglia-related nuclei onto identified thalamostriatal projection neurons

    Complex brain circuits studied via simultaneous and permanent detection of three transported neuroanatomical tracers in the same histological section.

    Get PDF
    Experimental neuroanatomical tracing methods lie at the basis of the study of the nervous system. When the scientific question is relatively straightforward, it may be sufficient to derive satisfactory answers from experiments in which a single neuroanatomical tracing method is applied. In various scientific paradigms however, for instance when the degree of convergence of two different projections on a particular cortical area or subcortical nucleus is the subject of study, the application of single tracing methods can be either insufficient or uneconomical to solve the questions asked. In cases where chains of projections are the subjects of study, the simultaneous application of two tracing methods or even more may be compulsory. The present contribution focuses on combinations of several neuroanatomical tract-tracing strategies, enabling in the end the simultaneous, unambiguous and permanent detection of three transported markers according to a three-color paradigm. A number of combinations of three tracers or of two tracers plus the immunocytochemical detection of a neuroactive substance can be conceived; we describe several of these combinations implemented by us using the present multitracer protocol
    corecore