research

Use of peroxidase substrate Vector VIP for multiple staining in light microscop

Abstract

The study of the distribution of a fiber input to a particular brain area and the visualization of the anatomical relationships of that input with both projection- and interneurons, requires a triple-staining that allows the unequivocal distinction of each of the three components in one and the same histological section. In this regard, we investigated the properties of a recently introduced peroxidase chromogen, VIP (V-VIP; Vector Labs) in combination with two traditional substrates, standard diaminobenzidine (DAB, brown precipitate) and nickel-enhanced DAB (DAB-Ni, black). In rats, the anterograde tracer biotinylated dextran amine (BDA) and the retrograde tracer fluorogold (FG) were injected in the perirhinal cortex and hippocampus, respectively. Transported BDA was detected with an avidin-biotin-peroxidase complex, whereas the transported FG was detected via a PAP method. Tracing with BDA and FG was combined with parvalbumin- or calbindin-immunocytochemistry. We compared various combinations and staining sequences. The best results were obtained with a staining sequence comprising first the BDA stain with DAB-Ni as chromogen, second the FG protocol with the chromogen DAB and finally, parvalbumin- or calbinding-immunocytochemistry using the chromogen V-VIP. The order with which the chromogens were applied appeared to be critical. Partial or even total loss of V-VIP reaction product has been observed after standard dehydration in ethanol. As an alternative, a quick dehydration procedure in toluene yields much better staining. Colour separation is excellent and the sensitivity is high. This procedure may also be used for detection of any other combination of three different labels, taking the usual care to avoid cross-reactivity between antibodies

    Similar works