81 research outputs found

    Perception of Relative Depth Interval: Systematic Biases in Perceived Depth

    Get PDF
    Given an estimate of the binocular disparity between a pair of points and an estimate of the viewing distance, or knowledge of eye position, it should be possible to obtain an estimate of their depth separation. Here we show that, when points are arranged in different vertical geometric configurations across two intervals, many observers find this task difficult. Those who can do the task tend to perceive the depth interval in one configuration as very different from depth in the other configuration. We explore two plausible explanations for this effect. The first is the tilt of the empirical vertical horopter: Points perceived along an apparently vertical line correspond to a physical line of points tilted backwards in space. Second, the eyes can rotate in response to a particular stimulus. Without compensation for this rotation, biases in depth perception would result. We measured cyclovergence indirectly, using a standard psychophysical task, while observers viewed our depth configuration. Biases predicted from error due either to cyclovergence or to the tilted vertical horopter were not consistent with the depth configuration results. Our data suggest that, even for the simplest scenes, we do not have ready access to metric depth from binocular disparity.</jats:p

    A Turing-Like Handshake Test for Motor Intelligence

    Full text link
    Abstract. In the Turing test, a computer model is deemed to “think intelligently ” if it can generate answers that are not distinguishable from those of a human. This test is limited to the linguistic aspects of machine intelligence. A salient function of the brain is the control of movement, with the human hand movement being a sophisticated demonstration of this function. Therefore, we propose a Turing-like handshake test, for machine motor intelligence. We administer the test through a telerobotic system in which the interrogator is engaged in a task of holding a robotic stylus and interacting with another party (human, artificial, or a linear combination of the two). Instead of asking the interrogator whether the other party is a person or a computer program, we employ a forced-choice method and ask which of two systems is more humanlike. By comparing a given model with a weighted sum of human and artificial systems, we fit a psychometric curve to the answers of the interrogator and extract a quantitative measure for the computer model in terms of similarity to the human handshake

    Diatreta Cups, Light in Roman Dining Spaces

    Get PDF
    Cage cups or Diatreta are ancient Roman glass vessels produced by creating a thick blown blank of glass that, once cooled down, is taken to a glass cutter or diatretarii. The latter would cut and carve away most of the glass leaving a transparent vessel inside and an open-work decoration separated through thin posts of glass. The work is very delicate and exclusive, produced within limited space in time with no record of similar vessels until the late 1800 (Donald B. Harden & Toynbee 1959, p.181). Many of these glass objects have good-will inscriptions or decorations that express the importance of drinking. As for their provenance, most –when found in context- have been found in pagan burials. Nevertheless some fragments have been found in Christian environments or with Christian motifs like the Szekszárd cup. The location of these finds is mostly in the Rhine area –northern Empire, when Milan was one of its capitals (Aquaro 2004)- but the actual extent of finds expand throughout the 4th century extent of the Roman Empire. Considering their typological analysis there are basically two types, beaker and bowl. Beakers are considered drinking vessels as they either display a legend or a mythological reference to drink or wine. Whereas a general consensus agrees that open bowl-form cups were hanging lamps (Whitehouse 1988, p.28) since the 1986 find of a diatreta bowl with copper alloy hanging attachments. It is clear these were luxury objects to be used in special occasions and spaces. The aim of this paper is to understand the space were socialisation and drinking took place and the importance of luxurious objects to adorn, display and use. The paper will also put forward the idea that the beaker shaped diatreta vessels, usually considered for drinking, could have been lamps that encouraged drinking and good will to the guests. This paper is structured to first consider an introduction to late luxury Roman glass and then analysing the typological shape of all, or most of the diatreta currently known; secondly, through assessment by the means of comparison, analyse the writings or decorations the vessels were endowed with. Thirdly, by describing and understanding the people and the space were these vessels would have been used, emphasise the beauty of illuminating such spaces with these vessels. According to Herodotus in his historical investigation –5th century-, dress habits and food regime are elements of extreme importance to understand a people (Caporusso et al. 2011, p.12). This idea is not only valid for Herodotus’ time but it is something anthropology uses time and again to explain different aspects in people’s way of life. Through food and its environment, the dining space, this paper will aim to put the cage cups into a social context in order to give emphasis to the hypothesis of light versus wine

    Measurement of prompt D0^{0} and D\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Performance of reconstruction and identification of τ leptons decaying to hadrons and vτ in pp collisions at √s=13 TeV

    Get PDF
    The algorithm developed by the CMS Collaboration to reconstruct and identify τ leptons produced in proton-proton collisions at √s=7 and 8 TeV, via their decays to hadrons and a neutrino, has been significantly improved. The changes include a revised reconstruction of π⁰ candidates, and improvements in multivariate discriminants to separate τ leptons from jets and electrons. The algorithm is extended to reconstruct τ leptons in highly Lorentz-boosted pair production, and in the high-level trigger. The performance of the algorithm is studied using proton-proton collisions recorded during 2016 at √s=13 TeV, corresponding to an integrated luminosity of 35.9 fb¯¹. The performance is evaluated in terms of the efficiency for a genuine τ lepton to pass the identification criteria and of the probabilities for jets, electrons, and muons to be misidentified as τ leptons. The results are found to be very close to those expected from Monte Carlo simulation

    Performance of the CMS Level-1 trigger in proton-proton collisions at √s = 13 TeV

    Get PDF
    At the start of Run 2 in 2015, the LHC delivered proton-proton collisions at a center-of-mass energy of 13\TeV. During Run 2 (years 2015–2018) the LHC eventually reached a luminosity of 2.1× 1034^{34} cm2^{-2}s1^{-1}, almost three times that reached during Run 1 (2009–2013) and a factor of two larger than the LHC design value, leading to events with up to a mean of about 50 simultaneous inelastic proton-proton collisions per bunch crossing (pileup). The CMS Level-1 trigger was upgraded prior to 2016 to improve the selection of physics events in the challenging conditions posed by the second run of the LHC. This paper describes the performance of the CMS Level-1 trigger upgrade during the data taking period of 2016–2018. The upgraded trigger implements pattern recognition and boosted decision tree regression techniques for muon reconstruction, includes pileup subtraction for jets and energy sums, and incorporates pileup-dependent isolation requirements for electrons and tau leptons. In addition, the new trigger calculates high-level quantities such as the invariant mass of pairs of reconstructed particles. The upgrade reduces the trigger rate from background processes and improves the trigger efficiency for a wide variety of physics signals

    Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S)μ⁺μ⁻ in proton-proton collisions at √s = 13 TeV

    Get PDF
    The fiducial cross section for Y(1S)pair production in proton-proton collisions at a center-of-mass energy of 13TeVin the region where both Y(1S)mesons have an absolute rapidity below 2.0 is measured to be 79 ± 11 (stat) ±6 (syst) ±3 (B)pbassuming the mesons are produced unpolarized. The last uncertainty corresponds to the uncertainty in the Y(1S)meson dimuon branching fraction. The measurement is performed in the final state with four muons using proton-proton collision data collected in 2016 by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9fb1^{-1}. This process serves as a standard model reference in a search for narrow resonances decaying to Y(1S)μ+^{+}μ^{-} in the same final state. Such a resonance could indicate the existence of a tetraquark that is a bound state of two bquarks and two b̅ antiquarks. The tetraquark search is performed for masses in the vicinity of four times the bottom quark mass, between 17.5 and 19.5GeV, while a generic search for other resonances is performed for masses between 16.5 and 27GeV. No significant excess of events compatible with a narrow resonance is observed in the data. Limits on the production cross section times branching fraction to four muons via an intermediate Y(1S)resonance are set as a function of the resonance mass

    Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies

    Get PDF

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF
    corecore