144 research outputs found

    The use of ultraviolet radiation as a non-thermal treatment for the inactivation of alicyclobacillus acidoterrestris spores in water, wash water from a fruit processing plant and grape juice concentrate

    Get PDF
    Alicyclobacillus acidoterrestris is a non-pathogenic, spore-forming bacterium that can survive the commercial pasteurisation processes commonly used during fruit juice production. Surviving bacterial endospores germinate, grow and cause spoilage of high acid food products. Fruit juices can be treated using ultraviolet light (UV-C) with a wavelength of 254 nm, which has a germicidal effect against micro-organisms. In this study, A. acidoterrestris was inoculated into water, used wash water from a fruit processing plant and grape juice concentrate. Ultraviolet dosage levels (J L−1) of 0, 61, 122, 183, 244, 305 and 367 J L−1 were applied using a novel UV-C turbulent flow system. The UV treatment method was shown to reliably achieve in excess of a 4 log10 reduction (99.99%) per 0.5 kJ L-1 of UV-C dosage in all the liquids inoculated with A. acidoterrestris. The applied novel UV technology could serve as an alternative to thermal treatments of fruit juices for the inactivation of Alicyclobacillus spores as well as in the treatment of contaminated wash water used in fruit processing.Department of HE and Training approved lis

    The DACAPO-PESO campaign: Dynamics, Aerosol, Cloud and Precipitation Observations in the Pristine Environment of the Southern Ocean: An overview

    Get PDF
    This article gives an overview of the DACAPO-PESO field experiment, which has taken place in Punta Arenas, Chile, from November 2018 to November 2021, and showcases first exciting research results that have already emerged from it.In diesem Artikel wird ein Überblick über das DACAPO-PESO Experiment gegeben, welches von November 2018 bis November 2021 in Punta Arenas, Chile, stattgefunden hat. Außerdem werden erste spannende Forschungsergebnisse vorgestellt, die bereits daraus gewonnen wurden

    Erythropoietin Receptor Signaling Is Membrane Raft Dependent

    Get PDF
    Upon erythropoietin (Epo) engagement, Epo-receptor (R) homodimerizes to activate JAK2 and Lyn, which phosphorylate STAT5. Although recent investigations have identified key negative regulators of Epo-R signaling, little is known about the role of membrane localization in controlling receptor signal fidelity. Here we show a critical role for membrane raft (MR) microdomains in creation of discrete signaling platforms essential for Epo-R signaling. Treatment of UT7 cells with Epo induced MR assembly and coalescence. Confocal microscopy showed that raft aggregates significantly increased after Epo stimulation (mean, 4.3±1.4(SE) vs. 25.6±3.2 aggregates/cell; p≤0.001), accompanied by a >3-fold increase in cluster size (p≤0.001). Raft fraction immunoblotting showed Epo-R translocation to MR after Epo stimulation and was confirmed by fluorescence microscopy in Epo stimulated UT7 cells and primary erythroid bursts. Receptor recruitment into MR was accompanied by incorporation of JAK2, Lyn, and STAT5 and their activated forms. Raft disruption by cholesterol depletion extinguished Epo induced Jak2, STAT5, Akt and MAPK phosphorylation in UT7 cells and erythroid progenitors. Furthermore, inhibition of the Rho GTPases Rac1 or RhoA blocked receptor recruitment into raft fractions, indicating a role for these GTPases in receptor trafficking. These data establish a critical role for MR in recruitment and assembly of Epo-R and signal intermediates into discrete membrane signaling units

    The Janus kinases (Jaks)

    Get PDF
    The Janus kinase (Jak) family is one of ten recognized families of non-receptor tyrosine kinases. Mammals have four members of this family, Jak1, Jak2, Jak3 and Tyrosine kinase 2 (Tyk2). Birds, fish and insects also have Jaks. Each protein has a kinase domain and a catalytically inactive pseudo-kinase domain, and they each bind cytokine receptors through amino-terminal FERM (Band-4.1, ezrin, radixin, moesin) domains. Upon binding of cytokines to their receptors, Jaks are activated and phosphorylate the receptors, creating docking sites for signaling molecules, especially members of the signal transducer and activator of transcription (Stat) family. Mutations of the Drosophila Jak (Hopscotch) have revealed developmental defects, and constitutive activation of Jaks in flies and humans is associated with leukemia-like syndromes. Through the generation of Jak-deficient cell lines and gene-targeted mice, the essential, nonredundant functions of Jaks in cytokine signaling have been established. Importantly, deficiency of Jak3 is the basis of human autosomal recessive severe combined immunodeficiency (SCID); accordingly, a selective Jak3 inhibitor has been developed, forming a new class of immunosuppressive drugs

    Electroanalysis may be used in the Vanillin Biotechnological Production

    Get PDF
    This study shows that electroanalysis may be used in vanillin biotechnological production. As a matter of fact, vanillin and some molecules implicated in the process like eugenol, ferulic acid, and vanillic acid may be oxidized on electrodes made of different materials (gold, platinum, glassy carbon). By a judicious choice of the electrochemical method and the experimental conditions the current intensity is directly proportional to the molecule concentrations in a range suitable for the biotechnological process. So, it is possible to imagine some analytical strategies to control some steps in the vanillin biotechnological production: by sampling in the batch reactor during the process, it is possible to determine out of line the concentration of vanillin, eugenol, ferulic acid, and vanillic acid with a gold rotating disk electrode, and low concentration of vanillin with addition of hydrazine at an amalgamated electrode. Two other possibilities consist in the introduction of electrodes directly in the batch during the process; the first one with a gold rotating disk electrode using linear sweep voltammetry and the second one requires three gold rotating disk electrodes held at different potentials for chronoamperometry. The last proposal is the use of ultramicroelectrodes in the case when stirring is not possible

    Isolation and PCR detection of Enterobacter sakazakii in South African food products, specifically infant formula milks

    No full text
    Enterobacter sakazakii has recently been identified as an opportunistic pathogen. The current culture-dependent detection methods for these bacteria are time-consuming and in this study a PCR method for the detection of E. sakazakii in South African food products, including an internal amplification control (IAC) was developed. DNA was isolated and amplified from the products and they were plated on selective growth media after pre-enrichment and enrichment in Enterobacteriaceae enrichment broth. Four of the 22 products tested positive for the presence of E. sakazakii, confirmed by PCR detection and growth on selective media. The PCR method proved effective in detecting E. sakazakii in South African products after three days and could serve as an alternative for traditional microbiological techniques. © 2006 Springer Science+Business Media B.V.Articl
    corecore