652 research outputs found
Quasilocal Energy for a Kerr black hole
The quasilocal energy associated with a constant stationary time slice of the
Kerr spacetime is presented. The calculations are based on a recent proposal
\cite{by} in which quasilocal energy is derived from the Hamiltonian of
spatially bounded gravitational systems. Three different classes of boundary
surfaces for the Kerr slice are considered (constant radius surfaces, round
spheres, and the ergosurface). Their embeddings in both the Kerr slice and flat
three-dimensional space (required as a normalization of the energy) are
analyzed. The energy contained within each surface is explicitly calculated in
the slow rotation regime and its properties discussed in detail. The energy is
a positive, monotonically decreasing function of the boundary surface radius.
It approaches the Arnowitt-Deser-Misner (ADM) mass at spatial infinity and
reduces to (twice) the irreducible mass at the horizon of the Kerr black hole.
The expressions possess the correct static limit and include negative
contributions due to gravitational binding. The energy at the ergosurface is
compared with the energies at other surfaces. Finally, the difficulties
involved in an estimation of the energy in the fast rotation regime are
discussed.Comment: 22 pages, Revtex, Alberta-Thy-18-94. (the approximations in Section
IV have been improved. To appear in Phys. Rev. D
Radiative association and inverse predissociation of oxygen atoms
The formation of \mbox{O}_2 by radiative association and by inverse
predissociation of ground state oxygen atoms is studied using
quantum-mechanical methods. Cross sections, emission spectra, and rate
coefficients are presented and compared with prior experimental and theoretical
results. At temperatures below 1000~K radiative association occurs by approach
along the state of \mbox{O}_2 and above 1000~K inverse
predissociation through the \mbox{B}\,{}^3\Sigma_u^- state is the dominant
mechanism. This conclusion is supported by a quantitative comparison between
the calculations and data obtained from hot oxygen plasma spectroscopy.Comment: submitted to Phys. Rev. A (Sept. 7., 1994), 19 pages, 4 figures,
latex (revtex3.0 and epsf.sty
One-loop Renormalization of Black Hole Entropy Due to Non-minimally Coupled Matter
The quantum entanglement entropy of an eternal black hole is studied. We
argue that the relevant Euclidean path integral is taken over fields defined on
-fold covering of the black hole instanton. The statement that
divergences of the entropy are renormalized by renormalization of gravitational
couplings in the effective action is proved for non-minimally coupled scalar
matter. The relationship of entanglement and thermodynamical entropies is
discussed.Comment: 17 pages, latex, no figure
The value of predicting restriction of fetal growth and compromise of its wellbeing: Systematic quantitative overviews (meta-analysis) of test accuracy literature
BACKGROUND: Restriction of fetal growth and compromise of fetal wellbeing remain significant causes of perinatal death and childhood disability. At present, there is a lack of scientific consensus about the best strategies for predicting these conditions before birth. Therefore, there is uncertainty about the best management of pregnant women who might have a growth restricted baby. This is likely to be due to a dearth of clear collated information from individual research studies drawn from different sources on this subject. METHODS/DESIGN: A series of systematic reviews and meta-analyses will be undertaken to determine, among pregnant women, the accuracy of various tests to predict and/or diagnose fetal growth restriction and compromise of fetal wellbeing. We will search Medline, Embase, Cochrane Library, MEDION, citation lists of review articles and eligible primary articles and will contact experts in the field. Independent reviewers will select studies, extract data and assess study quality according to established criteria. Language restrictions will not be applied. Data synthesis will involve meta-analysis (where appropriate), exploration of heterogeneity and publication bias. DISCUSSION: The project will collate and synthesise the available evidence regarding the value of the tests for predicting restriction of fetal growth and compromise of fetal wellbeing. The systematic overviews will assess the quality of the available evidence, estimate the magnitude of potential benefits, identify those tests with good predictive value and help formulate practice recommendations
The postulates of gravitational thermodynamics
The general principles and logical structure of a thermodynamic formalism
that incorporates strongly self-gravitating systems are presented. This
framework generalizes and simplifies the formulation of thermodynamics
developed by Callen. The definition of extensive variables, the homogeneity
properties of intensive parameters, and the fundamental problem of
gravitational thermodynamics are discussed in detail. In particular, extensive
parameters include quasilocal quantities and are naturally incorporated into a
set of basic general postulates for thermodynamics. These include additivity of
entropies (Massieu functions) and the generalized second law. Fundamental
equations are no longer homogeneous first-order functions of their extensive
variables. It is shown that the postulates lead to a formal resolution of the
fundamental problem despite non-additivity of extensive parameters and
thermodynamic potentials. Therefore, all the results of (gravitational)
thermodynamics are an outgrowth of these postulates. The origin and nature of
the differences with ordinary thermodynamics are analyzed. Consequences of the
formalism include the (spatially) inhomogeneous character of thermodynamic
equilibrium states, a reformulation of the Euler equation, and the absence of a
Gibbs-Duhem relation.Comment: 28 pages, Revtex, no figures. An important sentence and several minor
corrections included. To appear in Physical Review
Accuracy and repeatability of wrist joint angles in boxing using an electromagnetic tracking system
© 2019, The Author(s). The hand-wrist region is reported as the most common injury site in boxing. Boxers are at risk due to the amount of wrist motions when impacting training equipment or their opponents, yet we know relatively little about these motions. This paper describes a new method for quantifying wrist motion in boxing using an electromagnetic tracking system. Surrogate testing procedure utilising a polyamide hand and forearm shape, and in vivo testing procedure utilising 29 elite boxers, were used to assess the accuracy and repeatability of the system. 2D kinematic analysis was used to calculate wrist angles using photogrammetry, whilst the data from the electromagnetic tracking system was processed with visual 3D software. The electromagnetic tracking system agreed with the video-based system (paired t tests) in both the surrogate ( 0.9). In the punch testing, for both repeated jab and hook shots, the electromagnetic tracking system showed good reliability (ICCs > 0.8) and substantial reliability (ICCs > 0.6) for flexion–extension and radial-ulnar deviation angles, respectively. The results indicate that wrist kinematics during punching activities can be measured using an electromagnetic tracking system
Two-dimensional Quantum-Corrected Eternal Black Hole
The one-loop quantum corrections to geometry and thermodynamics of black hole
are studied for the two-dimensional RST model. We chose boundary conditions
corresponding to the eternal black hole being in the thermal equilibrium with
the Hawking radiation. The equations of motion are exactly integrated. The one
of the solutions obtained is the constant curvature space-time with dilaton
being a constant function. Such a solution is absent in the classical theory.
On the other hand, we derive the quantum-corrected metric (\ref{solution})
written in the Schwarzschild like form which is a deformation of the classical
black hole solution \cite{5d}. The space-time singularity occurs to be milder
than in classics and the solution admits two asymptotically flat black hole
space-times lying at "different sides" of the singularity. The thermodynamics
of the classical black hole and its quantum counterpart is formulated. The
thermodynamical quantities (energy, temperature, entropy) are calculated and
occur to be the same for both the classical and quantum-corrected black holes.
So, no quantum corrections to thermodynamics are observed. The possible
relevance of the results obtained to the four-dimensional case is discussed.Comment: Latex, 28 pges; minor corrections in text and abstract made and new
references adde
Further investigation of confirmed urinary tract infection (UTI) in children under five years: a systematic review.
Background: Further investigation of confirmed UTI in children aims to prevent renal scarring and future complications. Methods: We conducted a systematic review to determine the most effective approach to the further investigation of confirmed urinary tract infection (UTI) in children under five years of age. Results: 73 studies were included. Many studies had methodological limitations or were poorly reported. Effectiveness of further investigations: One study found that routine imaging did not lead to a reduction in recurrent UTIs or renal scarring. Diagnostic accuracy: The studies do not support the use of less invasive tests such as ultrasound as an alternative to renal scintigraphy, either to rule out infection of the upper urinary tract (LR- = 0.57, 95%CI: 0.47, 0.68) and thus to exclude patients from further investigation or to detect renal scarring (LR+ = 3.5, 95% CI: 2.5, 4.8). None of the tests investigated can accurately predict the development of renal scarring. The available evidence supports the consideration of contrast-enhanced ultrasound techniques for detecting vesico-ureteric reflux (VUR), as an alternative to micturating cystourethrography (MCUG) (LR+ = 14.1, 95% CI: 9.5, 20.8; LR- = 0.20, 95%CI: 0.13, 0.29); these techniques have the advantage of not requiring exposure to ionising radiation. Conclusion: There is no evidence to support the clinical effectiveness of routine investigation of children with confirmed UTI. Primary research on the effectiveness, in terms of improved patient outcome, of testing at all stages in the investigation of confirmed urinary tract infection is urgently required
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
How does study quality affect the results of a diagnostic meta-analysis?
Background: The use of systematic literature review to inform evidence based practice in diagnostics is rapidly expanding. Although the primary diagnostic literature is extensive, studies are often of low methodological quality or poorly reported. There has been no rigorously evaluated, evidence based tool to assess the methodological quality of diagnostic studies. The primary objective of this study was to determine the extent to which variations in the quality of primary studies impact the results of a diagnostic meta-analysis and whether this differs with diagnostic test type. A secondary objective was to contribute to the evaluation of QUADAS, an evidence-based tool for the assessment of quality in diagnostic accuracy studies. Methods: This study was conducted as part of large systematic review of tests used in the diagnosis and further investigation of urinary tract infection (UTI) in children. All studies included in this review were assessed using QUADAS, an evidence-based tool for the assessment of quality in systematic reviews of diagnostic accuracy studies. The impact of individual components of QUADAS on a summary measure of diagnostic accuracy was investigated using regression analysis. The review divided the diagnosis and further investigation of UTI into the following three clinical stages: diagnosis of UTI, localisation of infection, and further investigation of the UTI. Each stage used different types of diagnostic test, which were considered to involve different quality concerns. Results: Many of the studies included in our review were poorly reported. The proportion of QUADAS items fulfilled was similar for studies in different sections of the review. However, as might be expected, the individual items fulfilled differed between the three clinical stages. Regression analysis found that different items showed a strong association with test performance for the different tests evaluated. These differences were observed both within and between the three clinical stages assessed by the review. The results of regression analyses were also affected by whether or not a weighting (by sample size) was applied. Our analysis was severely limited by the completeness of reporting and the differences between the index tests evaluated and the reference standards used to confirm diagnoses in the primary studies. Few tests were evaluated by sufficient studies to allow meaningful use of meta-analytic pooling and investigation of heterogeneity. This meant that further analysis to investigate heterogeneity could only be undertaken using a subset of studies, and that the findings are open to various interpretations. Conclusion: Further work is needed to investigate the influence of methodological quality on the results of diagnostic meta-analyses. Large data sets of well-reported primary studies are needed to address this question. Without significant improvements in the completeness of reporting of primary studies, progress in this area will be limited
- …