78 research outputs found

    Hilbert-space partitioning of the molecular one-electron density matrix with orthogonal projectors

    Get PDF
    A double-atom partitioning of the molecular one-electron density matrix is used to describe atoms and bonds. All calculations are performed in Hilbert space. The concept of atomic weight functions (familiar from Hirshfeld analysis of the electron density) is extended to atomic weight matrices. These are constructed to be orthogonal projection operators on atomic subspaces, which has significant advantages in the interpretation of the bond contributions. In close analogy to the iterative Hirshfeld procedure, self-consistency is built in at the level of atomic charges and occupancies. The method is applied to a test set of about 67 molecules, representing various types of chemical binding. A close correlation is observed between the atomic charges and the Hirshfeld-I atomic charges.Comment: 10 pages, 3 figures, preprint, communicatio

    Isoscalar dipole coherence at low energies and forbidden E1 strength

    Full text link
    In 16O and 40Ca an isoscalar, low-energy dipole transition (IS-LED) exhausting approximately 4% of the isoscalar dipole (ISD) energy-weighted sum rule is experimentally known, but conspicuously absent from recent theoretical investigations of ISD strength. The IS-LED mode coincides with the so-called isospin-forbidden E1 transition. We report that for N=Z nuclei up to 100Sn the fully self-consistent Random-Phase-Approximation with finite-range forces, phenomenological and realistic, yields a collective IS-LED mode, typically overestimating its excitation energy, but correctly describing its IS strength and electroexcitation form factor. The presence of E1 strength is solely due to the Coulomb interaction between the protons and the resulting isospin-symmetry breaking. The smallness of its value is related to the form of the transition density, due to translational invariance. The calculated values of E1 and ISD strength carried by the IS-LED depend on the effective interaction used. Attention is drawn to the possibility that in N-not-equal-Z nuclei this distinct mode of IS surface vibration can develop as such or mix strongly with skin modes and thus influence the pygmy dipole strength as well as the ISD strength function. In general, theoretical models currently in use may be unfit to predict its precise position and strength, if at all its existence.Comment: 9 pages, 6 figures, EPJA submitte

    Coherent Compton scattering on light nuclei in the delta resonance region

    Full text link
    Coherent Compton scattering on light nuclei in the delta resonance region is studied in the impulse approximation and is shown to be a sensitive probe of the in-medium properties of the delta resonance. The elementary amplitude on a single nucleon is calculated from the unitary K-matrix approach developed previously. Modifications of the properties of the delta resonance due to the nuclear medium are accounted for through the self-energy operator of the delta, calculated from the one-pion loop. The dominant medium effects such as the Pauli blocking, mean-field modification of the nucleon and delta masses, and particle-hole excitations in the pion propagator are consistently included in nuclear matter.Comment: 30 pages, 11 figures, accepted for publication in Phys. Rev.
    • …
    corecore