173 research outputs found

    X-ray Observations of Gravitationally Lensed Quasars; Evidence for a Hidden Quasar Population

    Get PDF
    The large magnification factors of gravitationally lensed (GL) systems allow us to investigate the properties of quasars with X-ray luminosities that are substantially lower than those of unlensed ones and also provide an independent means of estimating the contribution of faint quasars to the hard X-ray component of the cosmic X-ray background. Our spectral analysis indicate a flattening of the spectral index in the hard band (4-20keV restframe) for 2 radio-loud quasars in the GL quasar sample for which the data have moderate signal-to-noise ratio. We have identified a large fraction of Broad Absorption Line (BAL) quasars amongst the GL quasar population. We find that approximately 35% of radio-quiet GL quasars contain BAL features which is significantly larger than the 10% fraction of BAL quasars presently found in optically selected flux limited quasar samples. We present a simple model that estimates the effects of attenuation and lens magnification on the luminosity function of quasars and that explains the observed fraction of GL BAL quasars. These observations suggest that a large fraction of BAL quasars are missed from flux limited optical surveys. Modeling of several X-ray observations of the GL BAL quasar PG1115+080 suggests that the observed large X-ray variability may be caused in part by a variable intrinsic absorber consistent with previously observed variability of the BAL troughs in the UV band. The observed large X-ray flux variations in PG1115+080 offer the prospect of considerably reducing errors in determining the time delay with future X-ray monitoring of this system and hence constraining the Hubble constant H0_{0}.Comment: 19 pages, 10 figures, 9 Tables, accepted for publication in Ap

    Absolute Proper Motion of the Fornax Dwarf Spheroidal Galaxy from Photographic and HST WFPC2 Data

    Full text link
    We have measured the absolute proper motion of the Fornax dwarf spheroidal galaxy from a combination of photographic plate material and HST WFPC2 data that provide a time baseline of up to 50 years. The extragalactic reference frame consists of 8 QSO images and 48 galaxies. The absolute proper motion is mu_alpha cos(delta) = 0.59 +-0.16 mas/yr and mu_delta = -0.15 +- 0.16 mas/yr. The corresponding orbit of Fornax is polar, with an eccentricity of 0.27, and a radial period of 4.5 Gyr. Fornax's current location is near pericenter. The direction of the motion of Fornax supports the notion that Fornax belongs to the Fornax-LeoI-LeoII-Sculptor-Sextans stream as hypothesized by Lynden-Bell (1976, 1982) and Majewski (1994). According to our orbit determination, Fornax crossed the Magellanic plane \~190 Myr ago, a time that coincides with the termination of the star-formation process in Fornax. We propose that ram-pressure stripping due to the passage of Fornax through a gaseous medium denser than the typical intragalactic medium left behind from the LMC may have caused the end of star formation in Fornax. The excess, anomalous clouds within the South Galactic pole region of the Magellanic Stream whose origin has long been debated in the literature as constituents of either the Magellanic Stream or of the extragalactic Sculptor group, are found to lie along the orbit of Fornax. We speculate that these clouds are stripped material from Fornax as the dwarf crossed the Magellanic Clouds' orbit.Comment: Accepted for publication in Astronomical Journal. The version with high resolution figures can be found at ftp://pegasus.astro.yale.edu/pub/dana/paper

    On the Double Planet System Around HD 83443

    Get PDF
    The Geneva group has reported two Saturn-mass planets orbiting HD 83443 (K0V) with periods of 2.98 and 29.8 d. The two planets have raised interest in their dynamics because of the possible 10:1 orbital resonance and the strong gravitational interactions. We report precise Doppler measurements of HD 83443 obtained with the Keck/HIRES and the AAT/UCLES spectrometers. These measurements strongly confirm the inner planet with period of 2.985 d, with orbital parameters in very good agreement with those of the Geneva group. However these Doppler measurements show no evidence of the outer planet, at thresholds of 1/4 (3 m/s) of the reported velocity amplitude of 13.8 m/s. Thus, the existence of the outer planet is in question. Indeed, the current Doppler measurements reveal no evidence of any second planet with periods less than a year.Comment: 26 pages incl. 3 tables and 8 figures; uses AASTE

    AGN in the XMM-Newton first-light image as probes for the interstellar medium in the LMC

    Get PDF
    The XMM-Newton first-light image revealed X-ray point sources which show heavily absorbed power-law spectra. The spectral indices and the probable identification of a radio counterpart for the brightest source suggest AGN shining through the interstellar gas of the Large Magellanic Cloud (LMC). The column densities derived from the X-ray spectra in combination with HI measurements will allow to draw conclusions on HI to H_2 ratios in the LMC and compare these with values found for the galactic plane.Comment: 4 pages, LaTex, 4 figures, Accepted for publication in A&A Letter

    Two extra-solar planets from the Anglo-Australian Planet Search

    Get PDF
    We report the detection of two new extra-solar planets from the Anglo-Australian Planet Search around the stars HD142 and HD23079. The planet orbiting HD142 has an orbital period of just under one year, while that orbiting HD23079 has a period of just under two years. HD142 falls into the class of "eccentric" gas giants. HD23079 lies in the recently uncovered class of "epsilon Ret-like" planets - extra-solar gas giant planets with near-circular orbits outside 0.1 a.u. The recent discovery of several more members of this class provides new impetus for the extension of existing planet searches to longer periods, in the search for Jupiter-like planets in Jupiter-like orbits.Comment: 6 pages, 4 figures and 3 tables include

    Photometric Light Curves and Polarization of Close-in Extrasolar Giant Planets

    Get PDF
    The close-in extrasolar giant planets [CEGPs], \ltorder 0.05 AU from their parent stars, may have a large component of optically reflected light. We present theoretical optical photometric light curves and polarization curves for the CEGP systems, from reflected planetary light. Different particle sizes of three condensates are considered. In the most reflective case, the variability is ≈100\approx 100 micromagnitudes, which will be easily detectable by the upcoming satellite missions MOST, COROT, and MONS, and possibly from the ground in the near future. The least reflective case is caused by small, highly absorbing grains such as solid Fe, with variation of much less than one micromagnitude. Polarization for all cases is lower than current detectability limits. We also discuss the temperature-pressure profiles and resulting emergent spectra of the CEGP atmospheres. We discuss the observational results of Tau Boo b by Cameron et al. (1999) and Charbonneau et al. (1999) in context of our model results. The predictions - the shape and magnitude of the light curves and polarization curves - are highly dependent on the size and type of condensates present in the planetary atmosphere.Comment: 33 pages, accepted by Ap

    Probing Dust in the Atmosphere of Brown Dwarfs Through Polarization

    Get PDF
    Theoretical analysis and observational evidences indicate that a brown dwarf with effective temperature greater than 1400 K would have dust cloud in its atmosphere. In this letter, we show that dust scattering should yield polarized continuum radiation from the relatively warm brown dwarfs and the polarized flux profile could be a potential diagnosis tool for the optical and the physical properties of dust grains. The degree of polarization due to multiple scattering will be more in the optical region if the particle size is small while significant polarization should be detected in the infra-red region if the particle size is large. It is pointed out that the departure from sphericity in the shape of the object due to rapid rotation and due to tidal effect by the companion in a binary system ensures the disc integrated polarization to be non-zero.Comment: 9 pages (Latex AAS v4.0), 2 postscript figures, Accepted by The Astrophysical Journal Letter

    Curvature of the Universe and Observed Gravitational Lens Image Separations Versus Redshift

    Get PDF
    In a flat, k=0 cosmology with galaxies that approximate singular isothermal spheres, gravitational lens image separations should be uncorrelated with source redshift. But in an open k=-1 cosmology such gravitational lens image separations become smaller with increasing source redshift. The observed separations do become smaller with increasing source redshift but the effect is even stronger than that expected in an Omega=0 cosmology. The observations are thus not compatible with the "standard" gravitational lensing statistics model in a flat universe. We try various open and flat cosmologies, galaxy mass profiles, galaxy merging and evolution models, and lensing aided by clusters to explain the correlation. We find the data is not compatible with any of these possibilities within the 95% confidence limit, leaving us with a puzzle. If we regard the observed result as a statistical fluke, it is worth noting that we are about twice as likely to observe it in an open universe (with 0<Omega<0.4) as we are to observe it in a flat one. Finally, the existence of an observed multiple image lens system with a source at z=4.5 places a lower limit on the deceleration parameter: q_0 > -2.0.Comment: 21 pages, 4 figures, AASTeX

    A Synoptic X-ray Study of M31 with the Chandra-HRC

    Full text link
    We have obtained 17 epochs of Chandra High Resolution Camera (HRC) snapshot images, each covering most of the M31 disk. The data cover a total baseline of 2.5 years and contain a mean effective exposure of 17 ks. We have measured the mean fluxes and long-term lightcurves for 166 objects detected in these data. At least 25% of the sources show significant variability. The cumulative luminosity function (CLF) of the disk sources is well-fit by a power-law with a slope comparable to those observed in typical elliptical galaxies. The CLF of the bulge is a broken power law similar to measurements made by previous surveys. We note several sources in the southwestern disk with L_X > 10^{37} erg/s . We cross-correlate all of our sources with published optical and radio catalogs, as well as new optical data, finding counterpart candidates for 55 sources. In addition, 17 sources are likely X-ray transients. We analyze follow-up HST WFPC2 data of two X-ray transients, finding F336W (U-band equivalent) counterparts. In both cases, the counterparts are variable. In one case, the optical counterpart is transient with F336W = 22.3 +/- 0.1 mag. The X-ray and optical properties of this object are consistent with a ~10 solar mass black hole X-ray nova with an orbital period of ~20 days. In the other case, the optical counterpart varies between F336W = 20.82 +/- 0.06 mag and F336W = 21.11 +/- 0.02 mag. Ground-based and HST observations show this object is bright (V = 18.8 +/- 0.1) and slightly extended. Finally, the frequency of bright X-ray transients in the M31 bulge suggests that the ratio of neutron star to black hole primaries in low-mass X-ray binaries (NS/BH) is ~1.Comment: 68 pages (27 text), 8 tables, 16 figures, 1 appendix, accepted by ApJ; accepted version contains reorganized text, new tables and figures, and updated result
    • 

    corecore