350 research outputs found

    A Monte Carlo Method for Modeling Thermal Damping: Beyond the Brownian-Motion Master Equation

    Full text link
    The "standard" Brownian motion master equation, used to describe thermal damping, is not completely positive, and does not admit a Monte Carlo method, important in numerical simulations. To eliminate both these problems one must add a term that generates additional position diffusion. He we show that one can obtain a completely positive simple quantum Brownian motion, efficiently solvable, without any extra diffusion. This is achieved by using a stochastic Schroedinger equation (SSE), closely analogous to Langevin's equation, that has no equivalent Markovian master equation. Considering a specific example, we show that this SSE is sensitive to nonlinearities in situations in which the master equation is not, and may therefore be a better model of damping for nonlinear systems.Comment: 6 pages, revtex4. v2: numerical results for a nonlinear syste

    The wave nature of biomolecules and fluorofullerenes

    Full text link
    We demonstrate quantum interference for tetraphenylporphyrin, the first biomolecule exhibiting wave nature, and for the fluorofullerene C60F48 using a near-field Talbot-Lau interferometer. For the porphyrins, which are distinguished by their low symmetry and their abundant occurence in organic systems, we find the theoretically expected maximal interference contrast and its expected dependence on the de Broglie wavelength. For C60F48 the observed fringe visibility is below the expected value, but the high contrast still provides good evidence for the quantum character of the observed fringe pattern. The fluorofullerenes therefore set the new mark in complexity and mass (1632 amu) for de Broglie wave experiments, exceeding the previous mass record by a factor of two.Comment: 5 pages, 4 figure

    Colloquium: Quantum interference of clusters and molecules

    Full text link
    We review recent progress and future prospects of matter wave interferometry with complex organic molecules and inorganic clusters. Three variants of a near-field interference effect, based on diffraction by material nanostructures, at optical phase gratings, and at ionizing laser fields are considered. We discuss the theoretical concepts underlying these experiments and the experimental challenges. This includes optimizing interferometer designs as well as understanding the role of decoherence. The high sensitivity of matter wave interference experiments to external perturbations is demonstrated to be useful for accurately measuring internal properties of delocalized nanoparticles. We conclude by investigating the prospects for probing the quantum superposition principle in the limit of high particle mass and complexity.Comment: 19 pages, 13 figures; v2: corresponds to published versio

    Spontaneous emission of non-dispersive Rydberg wave packets

    Get PDF
    Non dispersive electronic Rydberg wave packets may be created in atoms illuminated by a microwave field of circular polarization. We discuss the spontaneous emission from such states and show that the elastic incoherent component (occuring at the frequency of the driving field) dominates the spectrum in the semiclassical limit, contrary to earlier predictions. We calculate the frequencies of single photon emissions and the associated rates in the "harmonic approximation", i.e. when the wave packet has approximately a Gaussian shape. The results agree well with exact quantum mechanical calculations, which validates the analytical approach.Comment: 14 pages, 4 figure

    Structural and functional papez circuit integrity in amyotrophic lateral sclerosis

    Get PDF
    Cognitive impairment in amyotrophic lateral sclerosis (ALS) is heterogeneous but now recognized as a feature in non-demented patients and no longer exclusively attributed to executive dysfunction. However, despite common reports of temporal lobe changes and memory deficits in ALS, episodic memory has been less explored. In the current study, we examined how the Papez circuit—a circuit known to participate in memory processes—is structurally and functionally affected in ALS patients (n = 20) compared with healthy controls (n = 15), and whether these changes correlated with a commonly used clinical measure of episodic memory. Our multimodal MRI approach (cortical volume, voxel-based morphometry, diffusion tensor imaging and resting state functional magnetic resonance) showed reduced gray matter in left hippocampus, left entorhinal cortex and right posterior cingulate as well as increased white matter fractional anisotropy and decreased mean diffusivity in the left cingulum bundle (hippocampal part) of ALS patients compared with controls. Interestingly, thalamus, mammillary bodies and fornix were preserved. Finally, we report a decreased functional connectivity in ALS patients in bilateral hippocampus, bilateral anterior and posterior parahippocampal gyrus and posterior cingulate. The results revealed that ALS patients showed statistically significant structural changes, but more important, widespread prominent functional connectivity abnormalities across the regions comprising the Papez circuit. The decreased functional connectivity found in the Papez network may suggest these changes could be used to assess risk or assist early detection or development of memory symptoms in ALS patients even before structural changes are established

    On the limits of sexual health literacy: Insights from Ugandan schoolgirls

    Get PDF
    This article makes the case that current conceptions of sexual health literacy have limited relevance to the Ugandan context because they assume that knowledge of unsafe sexual practices will lead to changes in behavior and lifestyle. Drawing on a longitudinal case study with 15 Ugandan schoolgirls in rural Uganda from August 2004 to September 2006, this study argues that despite being well-informed about the risks and responsibilities of sexual activity, poverty and sexual abuse severely constrained options for these young women. Although many believed in the value of abstaining from sexual activity until marriage, they engaged in transactional sex to pay for school fees, supplies, clothing, and food. Further, fear of sexual abuse, early pregnancy, and HIV–AIDS compromised attempts to embrace sexuality. The article concludes with implications of the study for research and policy on sexual health literacy in Uganda and other poorly resourced regions of the world

    Quantum resonances and decoherence for delta-kicked atoms

    Full text link
    The quantum resonances occurring with delta-kicked atoms when the kicking period is an integer multiple of the half-Talbot time are analyzed in detail. Exact results about the momentum distribution at exact resonance are established, both in the case of totally coherent dynamics and in the case when decoherence is induced by Spontaneous Emission. A description of the dynamics when the kicking period is close to, but not exactly at resonance, is derived by means of a quasi-classical approximation where the detuning from exact resonance plays the role of the Planck constant. In this way scaling laws describing the shape of the resonant peaks are obtained. Such analytical results are supported by extensive numerical simulations, and explain some recent surprising experimental observations.Comment: 51 pages, 13 figures; KEYWORDS: quantum chaos, decoherence, kicked rotor, dynamical localization, atom optics; submitted to Nonlinearit
    • …
    corecore