1,350 research outputs found
Intermanifold similarities in partial photoionization cross sections of helium
Using the eigenchannel R-matrix method we calculate partial photoionization
cross sections from the ground state of the helium atom for incident photon
energies up to the N=9 manifold. The wide energy range covered by our
calculations permits a thorough investigation of general patterns in the cross
sections which were first discussed by Menzel and co-workers [Phys. Rev. A {\bf
54}, 2080 (1996)]. The existence of these patterns can easily be understood in
terms of propensity rules for autoionization. As the photon energy is increased
the regular patterns are locally interrupted by perturber states until they
fade out indicating the progressive break-down of the propensity rules and the
underlying approximate quantum numbers. We demonstrate that the destructive
influence of isolated perturbers can be compensated with an energy-dependent
quantum defect.Comment: 10 pages, 10 figures, replacement with some typos correcte
Linear theory of unstable growth on rough surfaces
Unstable homoepitaxy on rough substrates is treated within a linear continuum
theory. The time dependence of the surface width is governed by three
length scales: The characteristic scale of the substrate roughness, the
terrace size and the Ehrlich-Schwoebel length . If (weak step edge barriers) and ,
then displays a minimum at a coverage , where the initial surface width is reduced by a factor
. The r\^{o}le of deposition and diffusion noise is analyzed. The
results are applied to recent experiments on the growth of InAs buffer layers
[M.F. Gyure {\em et al.}, Phys. Rev. Lett. {\bf 81}, 4931 (1998)]. The overall
features of the observed roughness evolution are captured by the linear theory,
but the detailed time dependence shows distinct deviations which suggest a
significant influence of nonlinearities
Principles of precision medicine in stroke
The era of precision medicine has arrived and conveys tremendous potential, particularly for stroke neurology. The diagnosis of stroke, its underlying aetiology, theranostic strategies, recurrence risk and path to recovery are populated by a series of highly individualised questions. Moreover, the phenotypic complexity of a clinical diagnosis of stroke makes a simple genetic risk assessment only partially informative on an individual basis. The guiding principles of precision medicine in stroke underscore the need to identify, value, organise and analyse the multitude of variables obtained from each individual to generate a precise approach to optimise cerebrovascular health. Existing data may be leveraged with novel technologies, informatics and practical clinical paradigms to apply these principles in stroke and realise the promise of precision medicine. Importantly, precision medicine in stroke will only be realised once efforts to collect, value and synthesise the wealth of data collected in clinical trials and routine care starts. Stroke theranostics, the ultimate vision of synchronising tailored therapeutic strategies based on specific diagnostic data, demand cerebrovascular expertise on big data approaches to clinically relevant paradigms. This review considers such challenges and delineates the principles on a roadmap for rational application of precision medicine to stroke and cerebrovascular health
Semiclassical description of multiphoton processes
We analyze strong field atomic dynamics semiclassically, based on a full
time-dependent description with the Hermann-Kluk propagator. From the
properties of the exact classical trajectories, in particular the accumulation
of action in time, the prominent features of above threshold ionization (ATI)
and higher harmonic generation (HHG) are proven to be interference phenomena.
They are reproduced quantitatively in the semiclassical approximation.
Moreover, the behavior of the action of the classical trajectories supports the
so called strong field approximation which has been devised and postulated for
strong field dynamics.Comment: 10 pages, 11 figure
Enhanced ionization in small rare gas clusters
A detailed theoretical investigation of rare gas atom clusters under intense
short laser pulses reveals that the mechanism of energy absorption is akin to
{\it enhanced ionization} first discovered for diatomic molecules. The
phenomenon is robust under changes of the atomic element (neon, argon, krypton,
xenon), the number of atoms in the cluster (16 to 30 atoms have been studied)
and the fluency of the laser pulse. In contrast to molecules it does not
dissappear for circular polarization. We develop an analytical model relating
the pulse length for maximum ionization to characteristic parameters of the
cluster
Giant exciton Fano resonance in quasi-one-dimensional Ta2NiSe5
This work was partly supported by JSPS KAKENHI Grants No. 24224010, No. 15H05852, and No. 17H01140.We report the complex dielectric function of the quasi-one-dimensional chalcogenide Ta2NiSe5, which undergoes a structural phase transition presumably associated with exciton condensation below Tc = 326 K [Y. Wakisaka et al., Phys. Rev. Lett. 103, 026402 (2009); Y. F. Lu et al., Nat. Commun. 8, 14408 (2017)], and of the isostructural Ta2NiSe5, which does not exhibit such a transition. Using spectroscopic ellipsometry, we have detected exciton doublets with pronounced Fano line shapes in both the compounds. The exciton Fano resonances in Ta2NiSe5 display an order-of-magnitude higher intensity than those in Ta2NiSe5. In conjunction with prior theoretical work [E. Rashba, Sov. Phys. Semicond. 8, 807 (1975)], we attribute this observation to the giant oscillator strength of spatially extended exciton-phonon bound states in Ta2NiSe5. The formation of exciton-phonon complexes in Ta2NiSe5 and Ta2NiSe5 is confirmed by the pronounced temperature dependence of sharp interband transitions in the optical spectra, the peak energies and widths of which scale with the thermal population of optical phonon modes. The description of the optically excited states in terms of strongly overlapping exciton complexes is in good agreement with the hypothesis of an exciton insulator ground state.PostprintPeer reviewe
Scaling and Formulary cross sections for ion-atom impact ionization
The values of ion-atom ionization cross sections are frequently needed for
many applications that utilize the propagation of fast ions through matter.
When experimental data and theoretical calculations are not available,
approximate formulas are frequently used. This paper briefly summarizes the
most important theoretical results and approaches to cross section calculations
in order to place the discussion in historical perspective and offer a concise
introduction to the topic. Based on experimental data and theoretical
predictions, a new fit for ionization cross sections is proposed. The range of
validity and accuracy of several frequently used approximations (classical
trajectory, the Born approximation, and so forth) are discussed using, as
examples, the ionization cross sections of hydrogen and helium atoms by various
fully stripped ions.Comment: 46 pages, 8 figure
Determination of the Dalitz plot parameter alpha for the decay eta->3pi^0 with the Crystal Ball at MAMI-B
A precise measurement of the Dalitz plot parameter, alpha, for the eta->3pi^0
decay is presented. The experiment was performed with the Crystal Ball and TAPS
large acceptance photon detectors at the tagged photon beam facility of the
MAMI-B electron accelerator in Mainz. High statistics of 1.8*10^6 eta->3pi^0
events were obtained, giving the result alpha = -0.032 +/- 0.002(stat) +/-
0.002(syst).Comment: 9 pages, 6 figures, published in the online-first section of EPJ A,
included changes referees asked for, added DO
Quantum Tricritical Points in NbFe
Quantum critical points (QCPs) emerge when a 2nd order phase transition is
suppressed to zero temperature. In metals the quantum fluctuations at such a
QCP can give rise to new phases including unconventional superconductivity.
Whereas antiferromagnetic QCPs have been studied in considerable detail
ferromagnetic (FM) QCPs are much harder to access. In almost all metals FM QCPs
are avoided through either a change to 1st order transitions or through an
intervening spin-density-wave (SDW) phase. Here, we study the prototype of the
second case, NbFe. We demonstrate that the phase diagram can be modelled
using a two-order-parameter theory in which the putative FM QCP is buried
within a SDW phase. We establish the presence of quantum tricritical points
(QTCPs) at which both the uniform and finite susceptibility diverge. The
universal nature of our model suggests that such QTCPs arise naturally from the
interplay between SDW and FM order and exist generally near a buried FM QCP of
this type. Our results promote NbFe as the first example of a QTCP, which
has been proposed as a key concept in a range of narrow-band metals, including
the prominent heavy-fermion compound YbRhSi.Comment: 21 pages including S
Neutron skin of Pb from Coherent Pion Photoproduction
Information on the size and shape of the neutron skin on Pb has been
extracted from coherent pion photoproduction cross sections measured using the
Crystal Ball together with the Glasgow tagger at the MAMI electron beam
facility. On exploitation of an interpolated fit of a theoretical model to the
measured cross sections the half-height radius and diffuseness of the neutron
distribution are found to be 6.70 fm and 0.55 fm respectively, corresponding to a neutron
skin thickness =0.15 fm.
The results give the first successful extraction of a neutron skin with an
electromagnetic probe and indicate the skin of Pb has a halo character.
The measurement provides valuable new constraints on both the structure of
nuclei and the equation of state for neutron-rich matter.Comment: 4 figures 5 pages. Version submitted to journal. Includes additional
studies of systematic effects in the extracted diffuseness, which led to a
small increase in the quoted systematic error. These additional studies are
discussed in the revised manuscript. Also includes minor editorial
improvements to the tex
- …