90 research outputs found

    Direct Measurement of the Photon Statistics of a Triggered Single Photon Source

    Get PDF
    We studied intensity fluctuations of a single photon source relying on the pulsed excitation of the fluorescence of a single molecule at room temperature. We directly measured the Mandel parameter Q(T) over 4 orders of magnitude of observation timescale T, by recording every photocount. On timescale of a few excitation periods, subpoissonian statistics is clearly observed and the probablility of two-photons events is 10 times smaller than Poissonian pulses. On longer times, blinking in the fluorescence, due to the molecular triplet state, produces an excess of noise.Comment: 4 pages, 3 figures, 1 table submitted to Physical Review Letter

    Grafting fluorescent nanodiamonds onto optical tips

    Full text link
    We recently (Optics Express 17, 19969 (2009)) introduced an all-optical method for grafting onto the apex of an optical tip a single 20 nm nanodiamond with single color-center occupancy and used the resulting single-photon tip in scanning near-field imaging at room temperature, thereby achieving a genuine scanning single-photon microscopy working in ambient conditions. A variant of this method is described that allows for attaching several nanodiamonds onto the tip apex, releasing them all at once and finally recapturing them one by one by the scanning tip. This underlines the flexibility and powerfulness of our method and its variant that could be used in applications where a fixed number of selected optically active nano-objects requires positioning, or repositioning, at well defined locations with nanometer accuracy.Comment: Minor stylistic changes since first submissio

    Photoluminescence of single colour defects in 50 nm diamond nanocrystals

    Full text link
    We used optical confocal microscopy to study optical properties of diamond 50 nm nanocrystals first irradiated with an electron beam, then dispersed as a colloidal solution and finally deposited on a silica slide. At room temperature, under CW laser excitation at a wavelength of 514.5 nm we observed perfectly photostable single Nitrogen-Vacancy (NV) colour defects embedded in the nanocrystals. From the zero-phonon line around 575 nm in the spectrum of emitted light, we infer a neutral NV0 type of defect. Such nanoparticle with intrinsic fluorescence are highly promising for applications in biology where long-term emitting fluorescent bio-compatible nanoprobes are still missing.Comment: proceedings of ICDS 23 conference (23rd International Conference on Defects in Semiconductors, July 24 - July 29, 2005, Awaji Island, Hyogo, Japan); to appear in "Physica B

    Enhancing single-molecule photostability by optical feedback from quantum-jump detection

    Full text link
    We report an optical technique that yields an enhancement of single-molecule photostability, by greatly suppressing photobleaching pathways which involve photoexcitation from the triplet state. This is accomplished by dynamically switching off the excitation laser when a quantum-jump of the molecule to the triplet state is optically detected. This procedure leads to a lengthened single-molecule observation time and an increased total number of detected photons. The resulting improvement in photostability unambiguously confirms the importance of photoexcitation from the triplet state in photobleaching dynamics, and may allow the investigation of new phenomena at the single-molecule level

    Study of the optimal conditions for NV- center formation in type 1b diamond, using photoluminescence and positron annihilation spectroscopies

    Full text link
    We studied the parameters to optimize the production of negatively-charged nitrogen-vacancy color centers (NV-) in type~1b single crystal diamond using proton irradiation followed by thermal annealing under vacuum. Several samples were treated under different irradiation and annealing conditions and characterized by slow positron beam Doppler-broadening and photoluminescence (PL) spectroscopies. At high proton fluences another complex vacancy defect appears limiting the formation of NV-. Concentrations as high as 2.3 x 10^18 cm^-3 of NV- have been estimated from PL measurements. Furthermore, we inferred the trapping coefficient of positrons by NV-. This study brings insight into the production of a high concentration of NV- in diamond, which is of utmost importance in ultra-sensitive magnetometry and quantum hybrid systems applications
    • …
    corecore