163 research outputs found

    Localization and genomic structure of human deoxyhypusine synthase gene on chromosome 19p13.2-distal 19p13.1

    Get PDF
    The amino acid hypusine is formed post-translationally in a single cellular protein, the eukaryotic translation initiation factor 5A, by two enzymes, namely deoxyhypusine synthase and deoxyhypusine hydroxylase. Hypusine is found in all eukaryotes and in some archaebacteria, but not in eubacteria. The deoxyhypusine synthase cDNA was cloned and mapped by fluorescence in situ hybridization on chromosome 19p13.11-p13.12. Rare cDNAs containing internal deletions were also found. We localized the deoxyhypusine synthase gene on a high resolution cosmid/BAC contig map of chromosome 19 to a region in 19p13.2-distal 19p13.1 between MANB and JUNB. Analysis of the genomic exon/intron structure of the gene coding region showed that it consists of nine exons and spans a length of 6.6kb. From observation of the genomic structure, it seems likely that the internally deleted forms of mature RNA are the result of alternative splicing, rather than of artifacts

    A fine physical map of the CACNA1A gene region on 19p13.1-p13.2 chromosome

    Get PDF
    The P/Q-type Ca(2+) channel alpha(1A) subunit gene (CACNA1A) was cloned on the short arm of chromosome 19 between the markers D19S221 and D19S179 and found to be responsible for Episodic Ataxia type 2, Familial Hemiplegic Migraine and Spinocerebellar Ataxia type 6. This region was physically mapped by 11 cosmid contigs spanning about 1. 4Mb, corresponding to less than 70% of the whole region. The cosmid contig used to characterize the CACNA1A gene accounted only for the coding region of the gene lacking, therefore, the promoter and possible regulation regions. The present study improves the physical map around and within the CACNA1A by giving a complete cosmid or BAC contig coverage of the D19S221-D19S179 interval. A number of new STSs, whether polymorphic or not, were characterized and physically mapped within this region. Four ESTs were also assigned to cosmids belonging to specific contigs

    Forefront users\u2019 experience evaluation by employing together virtual reality and electroencephalography: A case study on cognitive effects of scents

    Get PDF
    Scents have the ability to affect peoples\u2019 mental states and task performance with to different extents. It has been widely demonstrated that the lemon scent, included in most all-purpose cleaners, elicits stimulation and activation, while the lavender scent elicits relaxation and sedative effects. The present study aimed at investigating and fostering a novel approach to evaluate users\u2019 experience with respect to scents\u2019 effects through the joint employment of Virtual Reality and users\u2019 neurophysiological monitoring, in particular Electroencephalography. In particular, this study, involving 42 participants, aimed to compare the effects of lemon and lavender scents on the deployment of cognitive resources during a daily life experience consisting in a train journey carried out in virtual reality. Our findings showed a significant higher request of cognitive resources during the processing of an informative message for subjects exposed to the lavender scent with respect to the lemon exposure. No differences were found between lemon and lavender conditions on the self\u2010reported items of pleasantness and involvement; as this study demonstrated, the employment of the lavender scent preserves the quality of the customer experience to the same extent as the more widely used lemon scent

    Nitrate: its role on ruminal fermentation of beef cattle under intensified grazing system.

    Get PDF
    Rumen fermentation it is one of the contributors to the greenhouse gases emission (GHG) that causes global warming, and due to that reason livestock production is scrutinized and questioned all around the world on how GHG emissions from this subsector can be mitigated. A range of techniques have been studied by animal scientist, at nutritional level, to mitigate methane emission. Nitrate is of them, and it has a double important role on rumen fermentation, acting as a source of non-protein nitrogen, and as an electron sink path that allows the redirection of hydrogen to nitrate reduction, instead of being used in the methanogenesis process, and thus reducing methane emission. The partial results here presented shows that nitrate does not affect forage, supplement, and total dry mater intake, and neither short chain fatty acids production, however, methane emission (g.kg.day-1) and CO2eq emissions per kg. head-1d-1were reduced when nitrate was added in the diet. Thus, nitrate has the ability in changing rumen fermentation, which besides acting as source of non-protein nitrogen, also mitigate anthropic GHG emissions from enteric fermentation

    Genome-Wide Identification of Bcl11b Gene Targets Reveals Role in Brain-Derived Neurotrophic Factor Signaling

    Get PDF
    B-cell leukemia/lymphoma 11B (Bcl11b) is a transcription factor showing predominant expression in the striatum. To date, there are no known gene targets of Bcl11b in the nervous system. Here, we define targets for Bcl11b in striatal cells by performing chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) in combination with genome-wide expression profiling. Transcriptome-wide analysis revealed that 694 genes were significantly altered in striatal cells over-expressing Bcl11b, including genes showing striatal-enriched expression similar to Bcl11b. ChIP-seq analysis demonstrated that Bcl11b bound a mixture of coding and non-coding sequences that were within 10 kb of the transcription start site of an annotated gene. Integrating all ChIP-seq hits with the microarray expression data, 248 direct targets of Bcl11b were identified. Functional analysis on the integrated gene target list identified several zinc-finger encoding genes as Bcl11b targets, and further revealed a significant association of Bcl11b to brain-derived neurotrophic factor/neurotrophin signaling. Analysis of ChIP-seq binding regions revealed significant consensus DNA binding motifs for Bcl11b. These data implicate Bcl11b as a novel regulator of the BDNF signaling pathway, which is disrupted in many neurological disorders. Specific targeting of the Bcl11b-DNA interaction could represent a novel therapeutic approach to lowering BDNF signaling specifically in striatal cells

    Impaired Heat Shock Response in Cells Expressing Full-Length Polyglutamine-Expanded Huntingtin

    Get PDF
    The molecular mechanisms by which polyglutamine (polyQ)-expanded huntingtin (Htt) causes neurodegeneration in Huntington's disease (HD) remain unclear. The malfunction of cellular proteostasis has been suggested as central in HD pathogenesis and also as a target of therapeutic interventions for the treatment of HD. We present results that offer a previously unexplored perspective regarding impaired proteostasis in HD. We find that, under non-stress conditions, the proteostatic capacity of cells expressing full length polyQ-expanded Htt is adequate. Yet, under stress conditions, the presence of polyQ-expanded Htt impairs the heat shock response, a key component of cellular proteostasis. This impaired heat shock response results in a reduced capacity to withstand the damage caused by cellular stress. We demonstrate that in cells expressing polyQ-expanded Htt the levels of heat shock transcription factor 1 (HSF1) are reduced, and, as a consequence, these cells have an impaired a heat shock response. Also, we found reduced HSF1 and HSP70 levels in the striata of HD knock-in mice when compared to wild-type mice. Our results suggests that full length, non-aggregated polyQ-expanded Htt blocks the effective induction of the heat shock response under stress conditions and may thus trigger the accumulation of cellular damage during the course of HD pathogenesis

    A novel approach to investigate tissue-specific trinucleotide repeat instability

    Get PDF
    Abstract Background In Huntington's disease (HD), an expanded CAG repeat produces characteristic striatal neurodegeneration. Interestingly, the HD CAG repeat, whose length determines age at onset, undergoes tissue-specific somatic instability, predominant in the striatum, suggesting that tissue-specific CAG length changes could modify the disease process. Therefore, understanding the mechanisms underlying the tissue specificity of somatic instability may provide novel routes to therapies. However progress in this area has been hampered by the lack of sensitive high-throughput instability quantification methods and global approaches to identify the underlying factors. Results Here we describe a novel approach to gain insight into the factors responsible for the tissue specificity of somatic instability. Using accurate genetic knock-in mouse models of HD, we developed a reliable, high-throughput method to quantify tissue HD CAG repeat instability and integrated this with genome-wide bioinformatic approaches. Using tissue instability quantified in 16 tissues as a phenotype and tissue microarray gene expression as a predictor, we built a mathematical model and identified a gene expression signature that accurately predicted tissue instability. Using the predictive ability of this signature we found that somatic instability was not a consequence of pathogenesis. In support of this, genetic crosses with models of accelerated neuropathology failed to induce somatic instability. In addition, we searched for genes and pathways that correlated with tissue instability. We found that expression levels of DNA repair genes did not explain the tissue specificity of somatic instability. Instead, our data implicate other pathways, particularly cell cycle, metabolism and neurotransmitter pathways, acting in combination to generate tissue-specific patterns of instability. Conclusion Our study clearly demonstrates that multiple tissue factors reflect the level of somatic instability in different tissues. In addition, our quantitative, genome-wide approach is readily applicable to high-throughput assays and opens the door to widespread applications with the potential to accelerate the discovery of drugs that alter tissue instability

    Cytosolic Guanine Nucledotide Binding Deficient Form of Transglutaminase 2 (R580a) Potentiates Cell Death in Oxygen Glucose Deprivation

    Get PDF
    Transglutaminase 2 (TG2) is a hypoxia-responsive protein that is a calcium-activated transamidating enzyme, a GTPase and a scaffolding/linker protein. Upon activation TG2 undergoes a large conformational change, which likely affects not only its enzymatic activities but its non-catalytic functions as well. The focus of this study was on the role of transamidating activity, conformation and localization of TG2 in ischemic cell death. Cells expressing a GTP binding deficient form of TG2 (TG2-R580A) with high basal transamidation activity and a more extended conformation showed significantly increased cell death in response to oxygen-glucose deprivation; however, targeting TG2-R580A to the nucleus abrogated its detrimental role in oxygen-glucose deprivation. Treatment of cells expressing wild type TG2, TG2-C277S (a transamidating inactive mutant) and TG2-R580A with Cp4d, a reversible TG2 inhibitor, did not affect cell death in response to oxygen-glucose deprivation. These findings indicate that the pro-cell death effects of TG2 are dependent on its localization to the cytosol and independent of its transamidation activity. Further, the conformational state of TG2 is likely an important determinant in cell survival and the prominent function of TG2 in ischemic cell death is as a scaffold to modulate cellular processes

    Huntingtin facilitates polycomb repressive complex 2

    Get PDF
    Huntington's disease (HD) is caused by expansion of the polymorphic polyglutamine segment in the huntingtin protein. Full-length huntingtin is thought to be a predominant HEAT repeat α-solenoid, implying a role as a facilitator of macromolecular complexes. Here we have investigated huntingtin's domain structure and potential intersection with epigenetic silencer polycomb repressive complex 2 (PRC2), suggested by shared embryonic deficiency phenotypes. Analysis of a set of full-length recombinant huntingtins, with different polyglutamine regions, demonstrated dramatic conformational flexibility, with an accessible hinge separating two large α-helical domains. Moreover, embryos lacking huntingtin exhibited impaired PRC2 regulation of Hox gene expression, trophoblast giant cell differentiation, paternal X chromosome inactivation and histone H3K27 tri-methylation, while full-length endogenous nuclear huntingtin in wild-type embryoid bodies (EBs) was associated with PRC2 subunits and was detected with trimethylated histone H3K27 at Hoxb9. Supporting a direct stimulatory role, full-length recombinant huntingtin significantly increased the histone H3K27 tri-methylase activity of reconstituted PRC2 in vitro, and structure–function analysis demonstrated that the polyglutamine region augmented full-length huntingtin PRC2 stimulation, both in HdhQ111 EBs and in vitro, with reconstituted PRC2. Knowledge of full-length huntingtin's α-helical organization and role as a facilitator of the multi-subunit PRC2 complex provides a novel starting point for studying PRC2 regulation, implicates this chromatin repressive complex in a neurodegenerative disorder and sets the stage for further study of huntingtin's molecular function and the impact of its modulatory polyglutamine region

    Structural Properties of Polyglutamine Aggregates Investigated via Molecular Dynamics Simulations

    Get PDF
    Polyglutamine (polyQ) beta-stranded aggregates constitute the hallmark of Huntington disease. The disease is fully penetrant when Q residues are more than 36-40 ("disease threshold"). Here, based on a molecular dynamics study on polyQ helical structures of different shapes and oligomeric states, we suggest that the stability of the aggregates increases with the number of monomers, while it is rather insensitive to the number of Qs in each monomer. However, the stability of the single monomer does depend on the number of side-chain intramolecular H-bonds, and therefore oil the number of Qs. If such number is lower than that of the disease threshold, the beta-stranded monomers are unstable and hence may aggregate with lower probability, consistently with experimental findings. Our results provide a possible interpretation of the apparent polyQ length dependent-toxicity, and they do not support the so-called "structural threshold hypothesis", which supposes a transition from random coil to a beta-sheet structure only above the disease threshold
    corecore