2,136 research outputs found
Non-parametric consistency test for multiple-sensing-modality data fusion
© 2015 IEEE. Fusing data from multiple sensing modalities, e.g. laser and radar, is a promising approach to achieve resilient perception in challenging environmental conditions. However, this may lead to catastrophic fusion in the presence of inconsistent data, i.e. when the sensors do not detect the same target due to distinct attenuation properties. It is often difficult to discriminate consistent from inconsistent data across sensing modalities using local spatial information alone. In this paper we present a novel consistency test based on the log marginal likelihood of a Gaussian process model that evaluates data from range sensors in a relative manner. A new data point is deemed to be consistent if the model statistically improves as a result of its fusion. This approach avoids the need for absolute spatial distance threshold parameters as required by previous work. We report results from object reconstruction with both synthetic and experimental data that demonstrate an improvement in reconstruction quality, particularly in cases where data points are inconsistent yet spatially proximal
Similarity-Detection and Localization
The detection of similarities between long DNA and protein sequences is
studied using concepts of statistical physics. It is shown that mutual
similarities can be detected by sequence alignment methods only if their amount
exceeds a threshold value. The onset of detection is a continuous phase
transition which can be viewed as a localization-delocalization transition. The
``fidelity'' of the alignment is the order parameter of that transition; it
leads to criteria for the selection of optimal alignment parameters.Comment: 4 pages including 4 figures (308kb post-script file
Melodic Intonation Therapy for aphasia: A multi-level meta-analysis of randomized controlled trials and individual participant data
Melodic Intonation Therapy (MIT) is a prominent rehabilitation program for individuals with post-stroke aphasia. Our meta-analysis investigated the efficacy of MIT while considering quality of outcomes, experimental design, influence of spontaneous recovery, MIT protocol variant, and level of generalization. Extensive literature search identified 606 studies in major databases and trial registers; of those, 22 studies-overall 129 participants-met all eligibility criteria. Multi-level mixed- and random-effects models served to separately meta-analyze randomized controlled trial (RCT) and non-RCT data. RCT evidence on validated outcomes revealed a small-to-moderate standardized effect in noncommunicative language expression for MIT-with substantial uncertainty. Unvalidated outcomes attenuated MIT's effect size compared to validated tests. MIT's effect size was 5.7 times larger for non-RCT data compared to RCT data (gĚ…case report = 2.01 vs. gĚ…RCT = 0.35 for validated Non-Communicative Language Expression measures). Effect size for non-RCT data decreased with number of months post-stroke, suggesting confound through spontaneous recovery. Deviation from the original MIT protocol did not systematically alter benefit from treatment. Progress on validated tests arose mainly from gains in repetition tasks rather than other domains of verbal expression, such as everyday communication ability. Our results confirm the promising role of MIT in improving trained and untrained performance on unvalidated outcomes, alongside validated repetition tasks, and highlight possible limitations in promoting everyday communication ability
Recommended from our members
Spring School on Language, Music, and Cognition: Organizing Events in Time
The interdisciplinary spring school “Language, music, and cognition: Organizing events in time” was held from February 26 to March 2, 2018 at the Institute of Musicology of the University of Cologne. Language, speech, and music as events in time were explored from different perspectives including evolutionary biology, social cognition, developmental psychology, cognitive neuroscience of speech, language, and communication, as well as computational and biological approaches to language and music. There were 10 lectures, 4 workshops, and 1 student poster session.
Overall, the spring school investigated language and music as neurocognitive systems and focused on a mechanistic approach exploring the neural substrates underlying musical, linguistic, social, and emotional processes and behaviors. In particular, researchers approached questions concerning cognitive processes, computational procedures, and neural mechanisms underlying the temporal organization of language and music, mainly from two perspectives: one was concerned with syntax or structural representations of language and music as neurocognitive systems (i.e., an intrapersonal perspective), while the other emphasized social interaction and emotions in their communicative function (i.e., an interpersonal perspective). The spring school not only acted as a platform for knowledge transfer and exchange but also generated a number of important research questions as challenges for future investigations
Differential functional benefits of ultra highfield MR systems within the language network
Several investigations have shown limitations of fMRI reliability with the current standard field strengths. Improvement is expected from ultra highfield systems but studies on possible benefits for cognitive networks are lacking. Here we provide an initial investigation on a prominent and clinically highly-relevant cognitive function: language processing in individual brains. 26 patients evaluated for presurgical language localization were investigated with a standardized overt language fMRI paradigm on both 3T and 7T MR scanners. During data acquisition and analysis we made particular efforts to minimize effects not related to static magnetic field strength differences. Six measures relevant for functional activation showed a large dissociation between essential language network nodes: although in Wernicke's area 5/6 measures indicated a benefit of ultra highfield, in Broca's area no comparison was significant. The most important reason for this discrepancy was identified as being an increase in susceptibility-related artifacts in inferior frontal brain areas at ultra high field. We conclude that functional UHF benefits are evident, however these depend crucially on the brain region investigated and the ability to control local artifacts
Automatically extracting functionally equivalent proteins from SwissProt
In summary, FOSTA provides an automated analysis of annotations in UniProtKB/Swiss-Prot to enable groups of proteins already annotated as functionally equivalent, to be extracted. Our results demonstrate that the vast majority of UniProtKB/Swiss-Prot functional annotations are of high quality, and that FOSTA can interpret annotations successfully. Where FOSTA is not successful, we are able to highlight inconsistencies in UniProtKB/Swiss-Prot annotation. Most of these would have presented equal difficulties for manual interpretation of annotations. We discuss limitations and possible future extensions to FOSTA, and recommend changes to the UniProtKB/Swiss-Prot format, which would facilitate text-mining of UniProtKB/Swiss-Prot
- …