2,136 research outputs found

    Optimal sequence alignments

    Full text link

    Non-parametric consistency test for multiple-sensing-modality data fusion

    Get PDF
    © 2015 IEEE. Fusing data from multiple sensing modalities, e.g. laser and radar, is a promising approach to achieve resilient perception in challenging environmental conditions. However, this may lead to catastrophic fusion in the presence of inconsistent data, i.e. when the sensors do not detect the same target due to distinct attenuation properties. It is often difficult to discriminate consistent from inconsistent data across sensing modalities using local spatial information alone. In this paper we present a novel consistency test based on the log marginal likelihood of a Gaussian process model that evaluates data from range sensors in a relative manner. A new data point is deemed to be consistent if the model statistically improves as a result of its fusion. This approach avoids the need for absolute spatial distance threshold parameters as required by previous work. We report results from object reconstruction with both synthetic and experimental data that demonstrate an improvement in reconstruction quality, particularly in cases where data points are inconsistent yet spatially proximal

    Similarity-Detection and Localization

    Full text link
    The detection of similarities between long DNA and protein sequences is studied using concepts of statistical physics. It is shown that mutual similarities can be detected by sequence alignment methods only if their amount exceeds a threshold value. The onset of detection is a continuous phase transition which can be viewed as a localization-delocalization transition. The ``fidelity'' of the alignment is the order parameter of that transition; it leads to criteria for the selection of optimal alignment parameters.Comment: 4 pages including 4 figures (308kb post-script file

    Melodic Intonation Therapy for aphasia: A multi-level meta-analysis of randomized controlled trials and individual participant data

    Get PDF
    Melodic Intonation Therapy (MIT) is a prominent rehabilitation program for individuals with post-stroke aphasia. Our meta-analysis investigated the efficacy of MIT while considering quality of outcomes, experimental design, influence of spontaneous recovery, MIT protocol variant, and level of generalization. Extensive literature search identified 606 studies in major databases and trial registers; of those, 22 studies-overall 129 participants-met all eligibility criteria. Multi-level mixed- and random-effects models served to separately meta-analyze randomized controlled trial (RCT) and non-RCT data. RCT evidence on validated outcomes revealed a small-to-moderate standardized effect in noncommunicative language expression for MIT-with substantial uncertainty. Unvalidated outcomes attenuated MIT's effect size compared to validated tests. MIT's effect size was 5.7 times larger for non-RCT data compared to RCT data (gĚ…case report = 2.01 vs. gĚ…RCT = 0.35 for validated Non-Communicative Language Expression measures). Effect size for non-RCT data decreased with number of months post-stroke, suggesting confound through spontaneous recovery. Deviation from the original MIT protocol did not systematically alter benefit from treatment. Progress on validated tests arose mainly from gains in repetition tasks rather than other domains of verbal expression, such as everyday communication ability. Our results confirm the promising role of MIT in improving trained and untrained performance on unvalidated outcomes, alongside validated repetition tasks, and highlight possible limitations in promoting everyday communication ability

    Differential functional benefits of ultra highfield MR systems within the language network

    Get PDF
    Several investigations have shown limitations of fMRI reliability with the current standard field strengths. Improvement is expected from ultra highfield systems but studies on possible benefits for cognitive networks are lacking. Here we provide an initial investigation on a prominent and clinically highly-relevant cognitive function: language processing in individual brains. 26 patients evaluated for presurgical language localization were investigated with a standardized overt language fMRI paradigm on both 3T and 7T MR scanners. During data acquisition and analysis we made particular efforts to minimize effects not related to static magnetic field strength differences. Six measures relevant for functional activation showed a large dissociation between essential language network nodes: although in Wernicke's area 5/6 measures indicated a benefit of ultra highfield, in Broca's area no comparison was significant. The most important reason for this discrepancy was identified as being an increase in susceptibility-related artifacts in inferior frontal brain areas at ultra high field. We conclude that functional UHF benefits are evident, however these depend crucially on the brain region investigated and the ability to control local artifacts

    Automatically extracting functionally equivalent proteins from SwissProt

    Get PDF
    In summary, FOSTA provides an automated analysis of annotations in UniProtKB/Swiss-Prot to enable groups of proteins already annotated as functionally equivalent, to be extracted. Our results demonstrate that the vast majority of UniProtKB/Swiss-Prot functional annotations are of high quality, and that FOSTA can interpret annotations successfully. Where FOSTA is not successful, we are able to highlight inconsistencies in UniProtKB/Swiss-Prot annotation. Most of these would have presented equal difficulties for manual interpretation of annotations. We discuss limitations and possible future extensions to FOSTA, and recommend changes to the UniProtKB/Swiss-Prot format, which would facilitate text-mining of UniProtKB/Swiss-Prot
    • …
    corecore