529 research outputs found

    Disaster warning system: Satellite feasibility and comparison with terrestrial systems. Volume 1: Executive summary

    Get PDF
    The Disaster Warning System (DWS) is a conceptual system which will provide the National Weather Service (NWS) with communication services in the 1980s to help minimize losses caused by natural disasters. The object of this study is a comparative analysis between a terrestrial DWS and a satellite DWS. Baseline systems satisfying the NOAA requirements were synthesized in sufficient detail so that a comparison could be made in terms of performance and cost. The cost of both baseline systems is dominated by the disaster warning and spotter reporting functions. An effort was undertaken to reduce system cost through lower-capacity alternative systems generated by modifying the baseline systems. By reducing the number of required channels and modifying the spotter reporting techniques, alternative satellite systems were synthesized. A terrestrial alternative with the coverage reduced to an estimated 95 percent of the population was considered

    Morphological variation of the maxilla in modern humans and African apes

    Get PDF
    Differences in morphology among modern humans and African apes are frequently used when assessing whether hominin fossils should be attributed to a single species or represent evidence for taxic diversity. A good understanding of the degree and structure of the intergeneric, interspecific, and intraspecific variation, including aspects such as sexual dimorphism and age, are key in this context. Here we explore the variation and differences shown by the maxilla of extant hominines, as maxillary morphology is central in the diagnosis of several hominin taxa. Our sample includes adults of all currently recognized hominine species and subspecies, with a balanced species sex ratio. In addition, we compared the adults with a small sample of late juveniles. The morphology of the maxillae was captured using three-dimensional landmarks, and the size and shape were analyzed using geometric morphometric methods. Key observations are that 1) the maxillae of all extant hominine species and subspecies show statistically significant differences, but complete separation in shape is only seen at the genus level; 2) the degree of variation is not consistent between genera, with subspecies of Gorilla being more different from each other than are species of Pan; 3) the pattern of sexual shape dimorphism is different in Pan, Gorilla, and Homo, often showing opposite trends; and 4) differentiation between maxillary shapes is increased after adjustment for static intraspecific allometry. These results provide a taxonomically up-to-date comparative morphological framework to help interpret the hominin fossil record, and we discuss the practical implications in that context

    Cerebral complexity preceded enlarged brain size and reduced olfactory bulbs in Old World monkeys

    Get PDF
    Analysis of the only complete early cercopithecoid (Old World monkey) endocast currently known, that of 15-million-year (Myr)-old Victoriapithecus, reveals an unexpectedly small endocranial volume (ECV) relative to body size and a large olfactory bulb volume relative to ECV, similar to extant lemurs and Oligocene anthropoids. However, the Victoriapithecus brain has principal and arcuate sulci of the frontal lobe not seen in the stem catarrhine Aegyptopithecus, as well as a distinctive cercopithecoid pattern of gyrification, indicating that cerebral complexity preceded encephalization in cercopithecoids. Since larger ECVs, expanded frontal lobes, and reduced olfactory bulbs are already present in the 17- to 18-Myr-old ape Proconsul these features evolved independently in hominoids (apes) and cercopithecoids and much earlier in the former. Moreover, the order of encephalization and brain reorganization was apparently different in hominoids and cercopithecoids, showing that brain size and cerebral organization evolve independently

    Cerebral complexity preceded enlarged brain size and reduced olfactory bulbs in Old World monkeys

    No full text
    Analysis of the only complete early cercopithecoid (Old World monkey) endocast currently known, that of 15-million-year (Myr)-old Victoriapithecus, reveals an unexpectedly small endocranial volume (ECV) relative to body size and a large olfactory bulb volume relative to ECV, similar to extant lemurs and Oligocene anthropoids. However, the Victoriapithecus brain has principal and arcuate sulci of the frontal lobe not seen in the stem catarrhine Aegyptopithecus, as well as a distinctive cercopithecoid pattern of gyrification, indicating that cerebral complexity preceded encephalization in cercopithecoids. Since larger ECVs, expanded frontal lobes, and reduced olfactory bulbs are already present in the 17- to 18-Myr-old ape Proconsul these features evolved independently in hominoids (apes) and cercopithecoids and much earlier in the former. Moreover, the order of encephalization and brain reorganization was apparently different in hominoids and cercopithecoids, showing that brain size and cerebral organization evolve independently

    Australopithecus afarensis endocasts suggest ape-like brain organization and prolonged brain growth

    No full text
    Human brains are three times larger, are organized differently, and mature for a longer period of time than those of our closest living relatives, the chimpanzees. Together, these characteristics are important for human cognition and social behavior, but their evolutionary origins remain unclear. To study brain growth and organization in the hominin species Australopithecus afarensis more than 3 million years ago, we scanned eight fossil crania using conventional and synchrotron computed tomography. We inferred key features of brain organization from endocranial imprints and explored the pattern of brain growth by combining new endocranial volume estimates with narrow age at death estimates for two infants. Contrary to previous claims, sulcal imprints reveal an ape-like brain organization and no features derived toward humans. A comparison of infant to adult endocranial volumes indicates protracted brain growth in A. afarensis, likely critical for the evolution of a long period of childhood learning in hominins

    Assessing morphology and function of the semicircular duct system: Introducing new in-situ visualization and software toolbox

    Get PDF
    International audienceThe semicircular duct system is part of the sensory organ of balance and essential for navigation and spatial awareness in vertebrates. Its function in detecting head rotations has been modelled with increasing sophistication, but the biomechanics of actual semicircular duct systems has rarely been analyzed, foremost because the fragile membranous structures in the inner ear are hard to visualize undistorted and in full. Here we present a new, easy-to-apply and non-invasive method for three-dimensional in-situ visualization and quantification of the semicircular duct system, using X-ray micro tomography and tissue staining with phosphotungstic acid. Moreover, we introduce Ariadne, a software toolbox which provides comprehensive and improved morphological and functional analysis of any visualized duct system. We demonstrate the potential of these methods by presenting results for the duct system of humans, the squirrel monkey and the rhesus macaque, making comparisons with past results from neurophysiological, oculometric and biomechanical studies

    The biomechanical behaviour of the intervertebral disc

    Get PDF

    Morphology and function of Neandertal and modern human ear ossicles.

    Get PDF
    The diminutive middle ear ossicles (malleus, incus, stapes) housed in the tympanic cavity of the temporal bone play an important role in audition. The few known ossicles of Neandertals are distinctly different from those of anatomically modern humans (AMHs), despite the close relationship between both human species. Although not mutually exclusive, these differences may affect hearing capacity or could reflect covariation with the surrounding temporal bone. Until now, detailed comparisons were hampered by the small sample of Neandertal ossicles and the unavailability of methods combining analyses of ossicles with surrounding structures. Here, we present an analysis of the largest sample of Neandertal ossicles to date, including many previously unknown specimens, covering a wide geographic and temporal range. Microcomputed tomography scans and 3D geometric morphometrics were used to quantify shape and functional properties of the ossicles and the tympanic cavity and make comparisons with recent and extinct AMHs as well as African apes. We find striking morphological differences between ossicles of AMHs and Neandertals. Ossicles of both Neandertals and AMHs appear derived compared with the inferred ancestral morphology, albeit in different ways. Brain size increase evolved separately in AMHs and Neandertals, leading to differences in the tympanic cavity and, consequently, the shape and spatial configuration of the ossicles. Despite these different evolutionary trajectories, functional properties of the middle ear of AMHs and Neandertals are largely similar. The relevance of these functionally equivalent solutions is likely to conserve a similar auditory sensitivity level inherited from their last common ancestor
    corecore