7,048 research outputs found

    Validation and determination of a reference interval for Canine HbA1c using an immunoturbidimetric assay

    Get PDF
    Background: Hemoglobin A1c (HbA1c) provides a reliable measure of glycemic control over 2–3 months in human diabetes mellitus. In dogs, presence of HbA1c has been demonstrated, but there are no validated commercial assays. Objective: The purpose of the study was to validate a commercially available automated immunoturbidimetric assay for canine HbA1c and determine an RI in a hospital population. Methods: The specificity of the assay was assessed by inducing glycosylation in vitro using isolated canine hemoglobin, repeatability by measuring canine samples 5 times in succession, long term inter-assay imprecision by measuring supplied control materials, stability using samples stored at 4°C over 5 days and −20°C over 8 weeks, linearity by mixing samples of known HbA1c in differing proportions, and the effect of anticoagulants with paired samples. An RI was determined using EDTA-anticoagulated blood samples from 60 nondiabetic hospitalized animals of various ages and breeds. Hemoglobin A1c was also measured in 10 diabetic dogs. Results: The concentration of HbA1c increased proportionally with glucose concentration in vitro. For repeat measurements, the CV was 4.08% (range 1.16–6.10%). Samples were stable for 5 days at 4°C. The assay was linear within the assessed range. Heparin- and EDTA-anticoagulated blood provided comparable results. The RI for HbA1c was 9–18.5 mmol/mol. There was no apparent effect of age or breed on HbA1c. In diabetic dogs, HbA1c ranged from 14 to 48 mmol/mol. Conclusions: The assay provides a reliable method for canine HbA1c measurement with good analytic performance

    The Diversity and Abundance of the Benthic Macroinvertebrates in an Oligo-Mesotrophic Central Florida Lake

    Get PDF
    Benthic macroinvertebrates and physicochemical parameters were sampled monthly in Spring Lake, Florida from July, 1978, to June, 1979. Spring Lake is a slightly acidic, sand bottom lake located in the sandhill region of the Central Highlands. While submersed vegetation is not dense, the lake does contain an abundance of the endemic submersed plant Mayaca aubletii. The littoral zone is dominated by plants belonging to the genera Panicum, Nuphar, Hydrocotyle, Nymphaea, Satittaria, and Typha. The benthic macroinvertebrates collected consisted of 51 species; approximately 50 percent were in the family Chironomidae. The annual mean number of individuals was 947/m2. The mayfly Hexagenia munda Orlando was the most numerous species (18.4 percent of the annual mean); the Chironomidae was the most numerous family (31.6 percent of the annual mean). The annual mean value for the Simpson\u27s Index was 0.25 while the annual mean value for the Shannon Index was 2.60

    Butterfly pitch-angle distribution of relativistic electrons in the outer radiation belt: Evidence of nonadiabatic scattering

    Get PDF
    In this paper we investigate the scattering of relativistic electrons in the nightside outer radiation belt (around the geostationary orbit). We consider the particular case of low geomagnetic activity (|Dst|\u3c20 nT), quiet conditions in the solar wind, and absence of whistler wave emissions. For such conditions we find several events of Van Allen probe observations of butterfly pitch angle distributions of relativistic electrons (energies about 1–3 MeV). Many previous publications have described such pitch angle distributions over a wide energy range as due to the combined effect of outward radial diffusion and magnetopause shadowing. In this paper we discuss another mechanism that produces butterfly distributions over a limited range of electron energies. We suggest that such distributions can be shaped due to relativistic electron scattering in the equatorial plane of magnetic field lines that are locally deformed by currents of hot ions injected into the inner magnetosphere. Analytical estimates, test particle simulations, and observations of the AE index support this scenario. We conclude that even in the rather quiet magnetosphere, small scale (magnetic local time (MLT)-localized) injection of hot ions from the magnetotail can likely influence the relativistic electron scattering. Thus, observations of butterfly pitch angle distributions can serve as an indicator of magnetic field deformations in the nightside inner magnetosphere. We briefly discuss possible theoretical approaches and problems for modeling such nonadiabatic electron scattering

    Enhanced Na\u3csup\u3e+\u3c/sup\u3e/H\u3csup\u3e+\u3c/sup\u3e Exchange During Ischemia and Reperfusion Impairs Mitochondrial Bioenergetics and Myocardial Function

    Get PDF
    Inhibition of Na+/H+ exchange (NHE) during ischemia reduces cardiac injury due to reduced reverse mode Na+/Ca2+ exchange. We hypothesized that activating NHE-1 at buffer pH 8 during ischemia increases mitochondrial oxidation, Ca2+ overload, and reactive O2 species (ROS) levels and worsens functional recovery in isolated hearts and that NHE inhibition reverses these effects. Guinea pig hearts were perfused with buffer at pH 7.4 (control) or pH 8 +/- NHE inhibitor eniporide for 10 minutes before and for 10 minutes after 35- minute ischemia and then for 110 minutes with pH 7.4 buffer alone. Mitochondrial NADH and FAD, [Ca2+], and superoxide were measured by spectrophotofluorometry. NADH and FAD were more oxidized, and cardiac function was worse throughout reperfusion after pH 8 versus pH 7.4, Ca2+ overload was greater at 10-minute reperfusion, and superoxide generation was higher at 30-minute reperfusion. The pH 7.4 and eniporide groups exhibited similar mitochondrial function, and cardiac performance was most improved after pH 7.4+eniporide. Cardiac function on reperfusion after pH 8+eniporide was better than after pH 8. Percent infarction was largest after pH 8 and smallest after pH 7.4+eniporide. Activation of NHE with pH 8 buffer and the subsequent decline in redox state with greater ROS and Ca2+ loading underlie the poor functional recovery after ischemia and reperfusion

    Ion observations from geosynchronous orbit as a proxy for ion cyclotron wave growth during storm times

    Get PDF
    [1] There is still much to be understood about the processes contributing to relativistic electron enhancements and losses in the radiation belts. Wave particle interactions with both whistler and electromagnetic ion cyclotron (EMIC) waves may precipitate or accelerate these electrons. This study examines the relation between EMIC waves and resulting relativistic electron flux levels after geomagnetic storms. A proxy for enhanced EMIC waves is developed using Los Alamos National Laboratory Magnetospheric Plasma Analyzer plasma data from geosynchronous orbit in conjunction with linear theory. In a statistical study using superposed epoch analysis, it is found that for storms resulting in net relativistic electron losses, there is a greater occurrence of enhanced EMIC waves. This is consistent with the hypothesis that EMIC waves are a primary mechanism for the scattering of relativistic electrons and thus cause losses of such particles from the magnetosphere

    Hardware for digitally controlled scanned probe microscopes

    Get PDF
    The design and implementation of a flexible and modular digital control and data acquisition system for scanned probe microscopes (SPMs) is presented. The measured performance of the system shows it to be capable of 14-bit data acquisition at a 100-kHz rate and a full 18-bit output resolution resulting in less than 0.02-Å rms position noise while maintaining a scan range in excess of 1 µm in both the X and Y dimensions. This level of performance achieves the goal of making the noise of the microscope control system an insignificant factor for most experiments. The adaptation of the system to various types of SPM experiments is discussed. Advances in audio electronics and digital signal processors have made the construction of such high performance systems possible at low cost
    • …
    corecore