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Summary: Inhibition of Na+/H+ exchange (NHE) during ischemia reduces 

cardiac injury due to reduced reverse mode Na+/Ca2+ exchange. We 

hypothesized that activating NHE-1 at buffer pH 8 during ischemia increases 

mitochondrial oxidation, Ca2+ overload and reactive O2 species (ROS) levels, 

and worsens functional recovery in isolated hearts and that NHE inhibition 

reverses these effects. Guinea pig hearts were perfused with buffer at pH 7.4 

(control) or pH 8 +/− NHE inhibitor eniporide for 10 min before and for 10 

min after 35 min ischemia and then for 110 min with pH 7.4 buffer alone. 

Mitochondrial NADH and FAD, [Ca2+], and superoxide were measured by 

spectrophotofluorometry. NADH and FAD were more oxidized and cardiac 

function was worse throughout reperfusion after pH 8 vs. pH 7.4, Ca2+ 

overload was greater at 10 min reperfusion, and superoxide generation was 

higher at 30 min reperfusion. The pH 7.4 and eniporide groups exhibited 

similar mitochondrial function and cardiac performance was most improved 

after pH 7.4+eniporide. Cardiac function on reperfusion after pH 8+eniporide 

was better than after pH 8. % infarction was largest after pH 8 and smallest 

after pH 7.4+eniporide. Activation of NHE with pH 8 buffer and the 

subsequent decline in redox state with greater ROS and Ca2+ loading underlie 

the poor functional recovery after ischemia and reperfusion. 

Keywords: energy metabolism, free radicals, ischemia, mitochondria, 

reperfusion, Na+/H+ exchange 

Cardiac ischemia reperfusion (I/R) injury describes the injury a 

heart sustains when deprived of coronary perfusion followed by a 

sudden reperfusion. Major factors underlying I/R injury are cytosolic 

and mitochondrial (mt) Ca2+ loading and excess generation of reactive 

O2 species (ROS).1 The increase in mtCa2+ loading is a result of an I/R 

–induced increase in cytosolic Ca2+ loading and occurs largely via the 

mitochondrial Ca2+ uniporter (CaU).2 Na+/H+ exchange (NHE) activity 

is believed to be minimal under normal pH conditions but increases 

with an increase in buffer pH.3 NHE may become activated during 

ischemia in response to intracellular acidosis during anaerobic 

metabolism, but is especially activated during early reperfusion when 
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the transmembrane pH gradient is largest. Inhibition of cytosolic Na+ 

accumulation induced by activation of NHE, and reduction of excess 

cytosolic Ca2+ influx via reverse mode Na+/Ca2+ exchange (NCE), are 

the probable mechanisms of acute cardioprotection afforded by NHE 

inhibitors.4–6 The relative role of sarcolemmal vs. mitochondrial NHE 

(mtNHE) in these events is unknown, but mtCa2+ loading could also 

result from mtNHE and mtNCE.7,8 Our objective was to test if buffer pH 

–induced activation of NHE is responsible for the subsequent increase 

in mtCa2+ overload and how this might lead to mitochondrial as well as 

cardiac dysfunction. 

In previous reports we showed that blocking the NHE-1 isoform 

with eniporide (ENI) improved function and reduced infarct size on 

reperfusion after 6 h of no-flow 3°C storage in acidic cardioplegic 

solution,9 and that inhibition of NHE was as effective as cardioplegia 

alone in reducing cytosolic [Ca2+] after 4 h of cold ischemia.10 We,11 

and others,12–14 have also shown that blocking NHE reduced ischemia -

induced Na+ and Ca2+ overload and improved warm post-ischemic 

contractile recovery. The most direct involvement of NHE-1 in I/R 

injury comes from a study showing that mice carrying a null mutation 

in the Nhe1 gene were protected against I/R injury.15 

In previous studies10,11 we measured the effects of blocking NHE 

on cytosolic Ca2+ in intact hearts. In the present study our aim was to 

assess the effects of augmented NHE by alkalosis on mitochondrial 

Ca2+ and energetics in the intact heart during I/R injury and the 

reversibility of these effects with inhibition of NHE. We hypothesized 

that brief perfusion of hearts at pH 8.0 before and after ischemia 

would cause an additional increase in the trans-sarcolemmal proton 

gradient, so that cell acidosis during late ischemia and early 

reperfusion would augment activation of NHE. In turn NHE would 

cause an exaggerated increase in mt[Ca2+] and lead to a more 

oxidized redox state (less NADH, more FAD) and an increase in ROS 

generation during and after ischemia, thereby contributing to poor 

recovery from I/R injury. 

We predicted that inhibition of NHE with ENI during I/R-induced 

cytosolic Ca2+ and mtCa2+ loading would not only improve myocardial 

function and reduce cell death, but also restore the mitochondrial 

redox state, reduce mtCa2+ loading and lower ROS production, which 
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together contribute to reducing cardiac cell injury. To test this, we 

measured myocardial function and tissue damage, and used 

fluorescence techniques to assess on-line changes in redox state 

(NADH and FAD), mt[Ca2+], and superoxide (O2
−•) generation in the 

isolated beating heart. 

Methods 

Langendorff Heart Preparation 

The experiments conformed to the Guide for the Care and Use 

of Laboratory Animals (US NIH Publication No. 85–23, Revised 1996) 

and were approved by the Medical College of Wisconsin Biomedical 

Resources Studies Committee. Guinea pigs (n=84) were anesthetized 

with ketamine (50 mg/kg, IP) and decapitated. After thoracotomy, 

hearts were removed and perfused at 55 mmHg via the aortic root as 

described previously11,16–18 with a HEPES buffer solution (gassed with 

5% CO2, 95% O2) containing (in mM) 140 Na+, 4.5 K+, 2.5 Ca2+, 1.2 

Mg2+, 134 Cl−, 11.5 glucose, 2 pyruvate, 16 mannitol, 0.1 probenecid, 

0.05 EDTA, 5U/L insulin, 5 HEPES [4-(2-hydroxyethyl) piperazine-1-

ethanesulfonic acid N-(2-hydorxyethyl) piperazine-N’-(2-

ethanesulfonic acid)]) at pH 7.4 and 37°C. Buffer pH 8 was obtained 

by titrating CO2 into HEPES buffer as described19 and with 1 M NaOH. 

Final buffer [Na+] was 140±2 mM at pH 7.4 and 148±3 mM at pH 8. 

HEPES buffer was used to maintain extracellular [Ca2+] constant 

during changes in buffer pH because a large increase in buffer pH in 

bicarbonate/phosphate buffers causes a large fall in free [Ca2+].19 

Buffer [Ca2+] was 2.26±0.02 mM at pH 7.4 and 2.23±0.02 mM at pH 

8. 

Isovolumetric left ventricular pressure (LVP) and its first 

derivatives (dLVP/dtmax, contractility; dLVP/dtmin, relaxation), heart 

rate (HR), and coronary flow were measured as described.11,16–18 

Coronary arterial (aortic inflow) and coronary venous (right ventricular 

outflow) Na+, K+, Ca2+, pCO2, pO2 and pH were measured off-line with 

an intermittently self-calibrating analyzer system; venous pO2 was also 

measured continuously with an elecrode placed in the coronary 

effluent tubing. Cardiac O2 delivery was defined as coronary flow•heart 

weight−1•(paO2)•24 µL O2/mL (37°C); cardiac O2 consumption (MVO2) 
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as coronary flow•heart weight−1•(paO2-pvO2)•24 µL O2/mL (37°C) at 

760 mmHg; cardiac efficiency as developed LVP•HR/MVO2; and %O2 

extraction as 100•(paO2 - pvO2)/paO2 (where paO2 and pvO2 are 

arterial and venous pO2, respectively). 

Measurements of Cardiac Mitochondrial Redox State, 

O2
−• and [Ca2+] 

FAD fluorescence is derived only from mitochondria; the 

majority of the NADH signal also arises from mitochondria20–22 and 

mitochondria comprise about 1/3 the volume of cardiac myocytes.23,24 

The majority of superoxide (O2
−•) likely originates from cardiac 

mitochondria because its generation in the isolated heart is very 

sensitive to mitochondrial inhibitors and insensitive to inhibitors of 

xanthine oxidase.25 Myocardial [Ca2+] signals arise from non-cytosolic 

sources after quenching by MnCl2;31 the major non-cytosolic source is 

the mitochondrial compartment because of its large volume relative to 

cell volume.23,24 

NADH and FAD, mt[Ca2+], or O2
−• was measured near 

continuously via a trifurcated fiberoptic probe (3.8 mm2/bundle) placed 

directly on the free LV wall using one of four excitation (λex) and 

emission (λem) fluorescence wavelengths11,16–18,26 assessed by 

spectrophotofluorometery (SLM Instruments Inc, Urbana IL; and 

Photon Technology International, London ON) in different subsets of 

hearts. Fluorescence light intensity is transmural but attenuated at the 

endocardial surface to 20–30% of that at the epicardial surface.27 In a 

subset of hearts, as described,16,18,26 10 µM dihydroethidium (DHE) 

was loaded for 20 min; at 540 nm λex and 590 nm λem the fluorescence 

is primarily a marker of O2
−• radicals.28–30 An intermediate product of 

DHE is 2-hydroxyethidium, which is labile and fluoresces at a slightly 

shorter wavelength.29,30 We speculate that this labile intermediate 

forms rapidly, is reversible, and is not necessarily dependent on DNA 

chelation to generate the fluorescence signal. In other hearts NADH 

autofluorescence (350 nm λex and λem 450/390 nm) and FAD 

autofluorescence (480 nm λex and λem 540 nm) were measured near 

simultaneously.17,18,26 Alternatively, hearts were loaded with 6 µM indo 

1 AM for 30 min; after washout, the cytosolic signal (350 nm λex and 

λem 390/450 nm) was quenched with 100 µM MnCl2, which permitted 
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measurement of mt[Ca2+].31 mt[Ca2+] was corrected for NADH 

autofluorescence during I/R for each group. Calibration of indo 1 for 

[Ca2+] was described previously.32 Changing perfusate pH from 7.4 to 

8 had no significant effect on Indo 1 fluorescence signal. Each signal 

was digitized and recorded at 200 Hz and computed later for mt[Ca2+]. 

Loading of DHE and indo 1 transiently decreases contractility; washout 

restores contractility. 

Protocol 

There was a time control group and two pH ischemia groups 

treated or untreated with 10 µM eniporide (ENI). This concentration 

was chosen because ten Hove et al.13 reported that 3 µM eniporide 

should block NHE by at least 95%. In each heart either mt[Ca2+], O2
−• 

or NADH plus FAD were assessed under the same protocol. After 

baseline measurement, hearts of the four ischemia groups were 

perfused for 10 min either with pH 7.4 (ischemia control), pH 8 alone, 

pH 7.4+ENI, or pH 8+ENI. ENI alone did not alter fluorescence 

characteristics or spectra of any dye. This was followed by 35 min of 

no flow global ischemia induced by clamping the aortic inflow tubing. 

After ischemia, hearts were treated in the same manner as before 

ischemia for 10 min before reverting to perfusion at pH 7.4 for the 

remainder of reperfusion (110 min). At the end of each experiment 

hearts were removed and atria discarded; ventricles (1.3±0.2 g) were 

cut into 3–4 mm transverse sections and immersed in 0.1% 2,3,5-

triphenyltetrazolium chloride (TTC) for measurement of infarct size.9–

11,17,18,26 

Experiments were also conducted in two additional groups, pH 

6.5 and pH 6.5+ENI. Specific results from these studies are only 

displayed in Table 1. We observed that pH 6.5 alone or with ENI was 

as efficacious as pH 7.4+ENI in protecting mitochondria and improving 

functional recovery. 
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Statistical Analysis 

All data are expressed as mean ±SEM. Statistical differences 

were measured by two-way analysis of variance for repeated measures 

of a given variable across the four groups at specific time points 

(baseline, at 15 and 30 min ischemia, and at 10, 30 and 60 min during 

reperfusion). One-way analysis of variance was used to determine 

changes over time for a given variable at the same time points. If F 

tests were significant (P<0.05), appropriate ad hoc tests (Student-

Newman-Keuls or Duncan) were used to compare means (P <0.05; 

two-tailed). As in our previous studies,11,18,26 functional recovery and 

changes in fluorescent signals at 60 min reperfusion were not 

significantly different from those at 120 min reperfusion (not 

displayed). Values for NADH, FAD and O2
−• are expressed in arbitrary 

fluorescence units (afu) and m[Ca2+] in nM. Infarct size was 

determined in a blinded manner after 120 min reperfusion. 

Results 

Mitochondrial Redox State, mt[Ca2+] and ROS 

Production 

All variables in the time control (i.e., no ischemia) experiments 

remained unchanged during the 3 h period of perfusion. Baseline 

values for NADH (Fig. 1A) and FAD (Fig. 1B) (redox state) were not 

different among groups and did not change before ischemia due to pH 

or ENI. At the onset of ischemia NADH abruptly increased by 

approximately 17%, while FAD more slowly decreased by 

approximately 19%. Note that on reperfusion, NADH levels decreased 

http://dx.doi.org/10.1097/FJC.0b013e3181831337
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659015/#R11
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659015/#R18
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659015/#R26
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659015/figure/F1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659015/figure/F1/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of Cardiovascular Pharmacology, Vol. 52, No. 3 (September 2008): pg. 236-244. DOI. This article is © Lippincott 
Williams & Wilkins, Inc. and permission has been granted for this version to appear in e-Publications@Marquette. 
Lippincott Williams & Wilkins, Inc. does not grant permission for this article to be further copied/distributed or hosted 
elsewhere without the express permission from Lippincott Williams & Wilkins, Inc. 

8 

 

and FAD levels increased, so that by 60 min reperfusion, NADH and 

FAD levels, respectively, were farther from basal values in the pH 8 

group and more normalized in the pH 7.4+ENI group and pH 7.4 and 

pH 8+ENI groups. The biphasic changes in NADH and FAD during 

ischemia and reperfusion were not different between the pH 7.4+ENI 

and pH 7.4 groups. Acidic buffer (pH 6.5) had similar myocardial 

protective effects on NADH and FAD as did pH 7.4+ENI; pH 6.5+ENI 

did not improve mitochondrial redox state any better than pH 6.5 

alone (Table 1). 

 

Figure 1 Changes in NADH (A) and FAD (B) (autofluorescence units, afu), during 

perfusion with HEPES buffer at pH 7.4 (control; n=7), pH 8 (n=7), pH 7.4+eniporide 

(ENI, 10 µM) (n=6), or pH 8+ENI (10 µM) (n=6) 10 min before and 10 min after 35 

min no flow, global ischemia. A non-ischemia, pH 7.4 time control group (n=4) is also 

displayed for all variables. For P <0.05: * pH 8 vs. 7.4; # pH 8+ENI vs. pH 8; † pH 

7.4+ENI vs. pH 7.4. Attenuated Na+/H+ exchange by the lower pH and or ENI led to a 

less oxidized redox state. 

Baseline mt[Ca2+] was not different among groups (Fig. 2A). 

Note that toward the end of ischemia, mt[Ca2+] increased in all 

groups, but much more so in the pH 8 group than in the pH 7.4 and 

ENI treated groups. Compared to the pH 8 group, addition of ENI at 
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pH 8 and pH 7.4 attenuated the rise in mt[Ca2+] during late ischemia. 

At 10 min reperfusion mt[Ca2+] was significantly elevated in the pH 8 

group compared to other groups. mt[Ca2+] was reduced similarly in pH 

7.4+ENI and pH 6.5 (Table 1) groups and mt[Ca2+] was higher in the 

pH 6.5+ENI group than in the pH 6.5 group at 60 min reperfusion 

(Table 1). 

 

Figure 2 Changes in mt[Ca2+] in nM (A) and superoxide (O2
−•) in afu (B), during 

perfusion with HEPES buffer at pH 7.4 (control; n=8 each variable), pH 8 (n=7 each 

variable), pH 7.4+ENI (10 µM) (n=7 each variable), or pH 8+ENI (10 µM) (n=7 each 

variable) 10 min before and 10 min after 35 min no flow, global ischemia. For P 

<0.05: * pH 8 vs. 7.4; # pH 8+ENI vs. pH 8; † pH 7.4+ENI vs. pH 7.4. Attenuated 

Na+/H+ exchange by the lower pH and or ENI led to a smaller increase in mt[Ca2+] 

during ischemia and smaller increases in both mt[Ca2+] and O2
−• during early 

reperfusion. 

Baseline O2
−• levels (Fig. 2B) were not different among groups. 

In late ischemia O2
−• levels increased significantly in all groups to 

values not significantly different among groups. However, note that 

during 10 and 30 min reperfusion, O2
−• surged higher in the pH 8 

alone group, whereas it fell in all other groups, with pH 7.4+ENI 

showing the least increase in O2
−• levels at 10 min reperfusion. O2

−• 

http://dx.doi.org/10.1097/FJC.0b013e3181831337
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659015/table/T1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659015/table/T1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659015/figure/F2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659015/figure/F2/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of Cardiovascular Pharmacology, Vol. 52, No. 3 (September 2008): pg. 236-244. DOI. This article is © Lippincott 
Williams & Wilkins, Inc. and permission has been granted for this version to appear in e-Publications@Marquette. 
Lippincott Williams & Wilkins, Inc. does not grant permission for this article to be further copied/distributed or hosted 
elsewhere without the express permission from Lippincott Williams & Wilkins, Inc. 

10 

 

levels remained significantly elevated during the first 30 min of 

reperfusion, but addition of ENI at pH 8 significantly reduced the 

reperfusion -induced increase in O2
−• production to a level similar to 

that in the two pH 7.4 groups. The pH 6.5 and 6.5+ENI groups (Table 

1) displayed similarly less O2
−• production during reperfusion at a level 

equivalent to that of the pH 7.4+ENI group. 

Cardiac Function and Infarct Size 

Baseline values were not different among groups for developed 

LVP (devLVP) (Fig. 3A); diastolic LVP (diaLVP) (Fig. 3B) was set 

initially at 0 mmHg. Throughout reperfusion devLVP recovered least in 

the pH 8 (11 ± 2 % of baseline after 60 min reperfusion) group 

compared to all other groups; recovery was better in the pH 7.4+ENI 

(58 ± 7 %) group and intermediate in the pH 8+ENI (42 ± 8 %) and 

pH 7.4 (40 ± 4 %) groups. Note that during late ischemia, diaLVP rose 

above baseline in all groups and on reperfusion continued to increase 

but remained higher in the pH 8 group throughout reperfusion. The pH 

7.4+ENI group had the least increase in diaLVP during early 

reperfusion and the pH 7.4 and pH 8+ENI groups were intermediate. 

The pH 6.5+/− ENI groups exhibited similar increases in devLVP and 

decreases in diaLVP during reperfusion (Table 1); these variables were 

similar to those of the pH 7.4+ENI group. 
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Figure 3 Changes in developed left ventricular pressure (systolic-diastolic LVP or 

devLVP in mmHg; A), and diastolic left ventricular pressure (diaLVP in mmHg; B) 

during perfusion with HEPES buffer at pH 7.4 (control; n=12), pH 8 (n=12), pH 

7.4+ENI (10 µM) (n=12), or pH 8+ENI (10 µM) (n=12) 10 min before and 10 min 

after 35 min no flow, global ischemia. For P <0.05: * pH 8 vs. 7.4; # pH 8+ENI vs. pH 

8; † pH 7.4+ENI vs. pH 7.4. Attenuated Na+/H+ exchange by the lower pH and or ENI 

led to better cardiac muscle function throughout reperfusion. 

Functional and metabolic variables did not change over time in 

the time control (non ischemia) group (data not shown). Table 2 

shows that dLVP/dtmax, dLVP/dtmin and cardiac efficiency recovered 

poorly at 10 and 60 min of reperfusion in the pH 8 group compared to 

the pH 7.4 group; adding ENI to either pH group improved recovery of 

dLVP/dtmax and dLVP/dtmin throughout reperfusion; these variables 

were similar among the pH 7.4+ENI and pH 6.5 groups (Table 1). 

Cardiac efficiency was slower to recover in all groups (10 min 

reperfusion) but remained severely depressed at 60 min reperfusion 

only in the pH 8 group. The pH 8+ENI group exhibited improved 

recovery of cardiac efficiency compared to the pH 8 group. Heart rate, 

O2 consumption, and %O2 extraction were not significantly different 

among the pH 7.4 and pH 8 groups on reperfusion. 
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Baseline values for coronary flow (Fig. 4A) were not different 

among groups. At 60 min reperfusion, flow was higher in pH 7.4+ENI, 

pH 8+ENI and both pH 6.5 (Table 1) groups, and lower in 7.4 and pH 

8 groups. Similarly O2 delivery was higher in the ENI groups than the 

non-ENI groups on reperfusion (Table 2). Infarct size (Fig. 4B) was 

smaller in the pH 8+ENI group than in the pH 8 group, not different in 

the pH 8+ENI and pH 7.4 groups, and lowest in the pH 7.4+ENI 

(31±3%). Infarct size was not significantly different between pH 6.5 

(34±2%), pH 6.5+ENI (36±3%). 

 

Figure 4 Changes in coronary flow (A) during perfusion with HEPES buffer at pH 

7.4 (control; n=12), pH 8 (n=12), pH 7.4+ENI (10 µM) (n=12), or pH 8+ENI (10 µM) 

(n=12) 10 min before and 10 min after 35 min no flow, global ischemia. For P <0.05: 

* pH 8 vs. 7.4; # pH 8+ENI vs. pH 8; † pH 7.4+ENI vs. pH 7.4. Infarct size (B) as a 

percentage of total ventricular weight measured after 120 min reperfusion. For P 

<0.05: * pH 8 vs. 7.4; # pH 8+ENI vs. pH 8; † pH 7.4+ENI vs. pH 7.4. Attenuated 

Na+/H+ exchange by ENI at both pH’s led to a higher coronary flow on reperfusion and 

less infarction. 
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Discussion 

Our objective was to activate and block NHE while examining 

changes in mitochondrial bioenergetics during I/R when hearts were 

perfused just before and after ischemia at pH 6.5, 7.4 or 8. The major 

findings are: 1) Brief perfusion of hearts at pH 8 before and after 

ischemia caused the most mitochondrial dysfunction. This was 

evidenced by the largest mt[Ca2+] overload during and after ischemia, 

the most oxidized mitochondrial redox state, and the highest level of 

O2
−• production during reperfusion. 2) NHE (and NCE) are activated 

early during ischemia as suggested by the rapid rise in mt[Ca2+], 

particularly in the pH 8 group. 3) Cardiac functional recovery was least 

and infarct size was largest in the pH 8 group. 4) Inhibition of NHE by 

ENI largely reversed the deleterious mitochondrial and cardiac 

functional effects of alkalosis (pH 8 group) on reperfusion. 

The improvements in contractility and relaxation in the eniporide 

groups were likely due to the lesser damaging effects of Ca2+ overload, 

ROS production, and the more reduced redox state. It is likely that the 

differences in mtCa2+ overload between the eniporide treated and 

untreated groups can be explained in part by the contribution of 

sarcolemmal NCE, secondary to NHE, to increase cytosolic Ca2+ 

loading. NCE and NHE activity in the mitochondrial membrane may 

also play a role. The mtCa2+ overload that remained in the eniporide 

groups could arise from other cytosolic sources such as enhanced Ca2+ 

release from the sarcoplasmic reticulum50 due to oxidative stress with 

greater passage of Ca2+ into the matrix via the CaU.2 

The eniporide-induced improvement in coronary flow on 

reperfusion likely stems from less vascular edema and/or improved 

endothelial and vascular responsiveness. The higher coronary flow and 

better contractility after eniporide treatment may underlie the higher 

O2 consumption. These observations clearly demonstrate that 

augmented activation of NHE with alkaline pH during I/R results in 

even worse cardiac functional recovery and point out the effectiveness 

of NHE inhibitors to effectively reverse this dysfunction. Improved 

mitochondrial bioenergetics with eniporide treatment may also underlie 

the improved cardiac function as discussed below. 
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Mitochondrial Ca2+ Loading and Na+/H+ Exchange 

NHE is relatively quiescent under non-ischemic conditions at an 

extracellular pH of 7.4.33 However, NHE becomes activated during 

ischemia when intracellular acidosis ensues, and especially during 

early reperfusion when a larger proton gradient develops across the 

cell membrane. NHE is both pH and Na+ dependent.34–36 The larger the 

transsarcolemmal H+ gradient, the more active is the NHE.37 It was 

shown that reperfusion of myocardial tissue at a high pH (7.9) 

significantly increased cell Na+ and Ca2+ content but only when NHE 

was not inhibited; this indicates the requirement for NHE activity to 

indirectly activate NCE.38 Increased NHE activity leads to increased 

cytosolic [Na+]11–14 and subsequently cytosolic Ca2+ overload as a 

result of activation of the reverse mode of NCE. The increase in 

cytosolic [Ca2+]10,11,39 additionally leads to mtCa2+ loading2,18 largely 

through the mtCa2+ uniporter (CaU) despite the apparent large 

buffering capacity for calcium in mitochondria. 

Our study clearly shows that mtCa2+ overload is augmented at a 

more alkaline pH during I/R injury but that it can be markedly reduced 

when NHE is inhibited with ENI or at pH 6.5. The additional increase in 

mt[Ca2+] in the pH 8 group is attributed to the added increase in the 

pH gradient across the cell membrane, which results in greater 

activation of NHE and reverse mode NCE. Thus, our study 

demonstrates that NHE during I/R injury has a consequence not only 

to augment cytosolic Ca2+ but also mtCa2+. Moreover, blocking NHE 

during and after ischemia reduced this cascade of events that 

culminated in mtCa2+ overload and impaired mitochondrial function on 

reperfusion. 

A previous study reported that in mitochondria isolated after 

I/R, NHE inhibition before and after ischemia exhibited improved state 

3 respiration and oxidative phosphorylation and decreased mt[Ca2+] 

compared to the controls.40 In another study inhibition of NHE with 

cariporide in rat cardiomyocytes reduced markers of oxidant –induced 

(H2O2) cell death by attenuating cytosolic Na+ and Ca2+ loading and 

mtCa2+ loading, and by preventing depolarization of ΔΨm.33 The 

present study conducted in intact, beating hearts supports the results 

derived previously in isolated mitochondria40 and isolated myocytes33 
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that NHE activation and inhibition also alter mtCa2+ and that mtCa2+ 

loading contribute to the impaired function that occurs with I/R injury. 

A small increase in mt[Ca2+] during increased workload is 

believed to stimulate the mitochondrial TCA cycle to furnish NADH via 

Ca2+-dependent mitochondrial dehydrogenases to match energy 

demand with supply. However, a high mt[Ca2+], as observed during 

I/R, can impair ATP synthesis and lead to a loss of ionic homeostasis, 

opening of the mitochondrial permeability transitional pore (mPTP), 

matrix swelling, and outer membrane rupture.33 Irreversible mPTP 

opening causes collapse of the ΔΨm and release of cytochrome c to 

induce apoptosis.41–44 The collapse of ΔΨm and the subsequent release 

of cytochrome c can lead to more ROS production, resulting in the 

vicious cycle of further amplification of cellular ROS production, 

mtCa2+overload, and increasing cell injury.1,44 

Mitochondrial Ca2+ and ROS with Na+/H+ Exchange 

Although mtCa2+ loading and formation of ROS are major 

causative factors in reperfusion stunning and permanent damage after 

ischemia, the cause-effect relationship between mtCa2+ loading and 

excess ROS during I/R injury remains unsettled.45,46 Numerous studies 

from our laboratory16,18 and others28,47 show that ROS are produced 

not only during reperfusion but also during ischemia. Our experiments 

may shed some light on whether the initial excess in mtCa2+ leads to 

ROS production or increased ROS leads to excess mtCa2+. In each 

group we observed similarly reduced redox states and moderate 

increases in O2
−• during the early ischemic period and an increasingly 

oxidized redox state and higher levels of O2
−• during the late ischemic 

period. However, mt[Ca2+] rose faster and much higher in the pH 8 

group compared to other groups. This suggests that an increase in 

mt[Ca2+] during ischemia does not directly cause any additional 

change in redox state or increase in O2
−• level during ischemia. 

However, during early reperfusion mt[Ca2+] and O2
−• were highest and 

redox state was lowest in the pH 8 group. Proportional but smaller 

changes occurred in the other groups, so on reperfusion these 

variables may all be interrelated. Increased mt[Ca2+] has been 

reported to alter the integrity of cytochromes a/a3 in complex IV48 and 

to increase nitration of mitochondrial proteins by ONOO−.49 Impaired 
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electron flow can result in increased electron leak and excess O2
−• 

production. Conversely, ROS production may modulate mt[Ca2+] by its 

action on cytosolic Ca2+ regulation. H2O2 was shown to modify the thiol 

residues of the ryanodine receptor and to stimulate Ca2+ release from 

sarcoplasmic reticulum.50 H2O2 at low concentrations may also directly 

activate NHE and lead to increased diastolic [Ca2+] in cultured neonatal 

myocytes.51,52 ROS was also found to increase activity of NCE in the 

reverse mode to increase cytosolic Ca2+ influx.45,53 

Mitochondrial Redox State and Na+/H+ Exchange 

Redox state (ratio of NADH/NAD and FADH2/FAD) is a 

qualitative measure of the reducing equivalents available to drive 

respiration. We,17,18 and others,20–22 showed that as the supply of O2 

diminishes during early ischemia, electron flux through the ETC falters, 

NADH accumulates, and oxidative phosphorylation rapidly declines.54–56 

In the present study, the NADH and FAD signals likely represent the 

average redox state of a volume of cells underlying the fiberoptic 

probe. The marked and irreversible decline in NADH and increase in 

FAD during reperfusion in the pH 8 group could represent greater dead 

cell volume57 or increased volume of irreversibly oxidized and energy-

depleted mitochondria.17 The latter seem to be the case in this study 

because the continued decline in NADH with the rise in FAD during 

reperfusion does not likely represent a reduction in the number of 

viable cells. It is interesting that the increasingly more oxidized state 

in the pH 8 group during reperfusion correlated with a gradual decline 

in the O2
−• level. This suggests ROS cannot be produced as the 

damaged mitochondria become more oxidized. In contrast, in the pH 

8+ENI group and the two pH 7.4 groups, both NADH and FAD returned 

nearly to their baseline values on reperfusion, and this was associated 

with less O2
−• and mtCa2+overload. Thus, the more reduced redox 

state during reperfusion implies greater availability of reducing 

equivalents and electrons for oxidative phosphorylation along with less 

electron leak and normalization of mtCa2+. 

Although many studies imply that NHE blockers confer cardiac 

protection by reducing cytosolic Ca2+ loading during I/R, the present 

study expresses the importance of NHE in inducing additional damage 

to mitochondria via mtCa2+ loading. Protecting mitochondria from 
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deleterious increases in mt[Ca2+] and ROS is also key to reducing I/R –

induced cell injury. Cardiomyocytes exposed to oxidative stress show 

Ca2+-dependent morphological changes in mitochondria such as 

swelling and loss of cristae, which is followed by collapse of the ΔΨm, 

and finally cytosolic fragmentation.58 

Mitochondrial Na+/H+ Exchange 

NHE inhibitors may exert their protective effects by a direct 

action on mtNHE59 as well as on sarcolemmal NHE, although there is 

controversy about the existence of mtNHE-1.39,60 Cariporide, an NHE-1 

inhibitor, was shown to block mtNHE and to delay matrix acidification 

and ATP depletion during simulated ischemia in cardiac myocytes.8 

mtCa2+ uptake by the CaU is largely dependent on the magnitude of 

ΔΨm; an increase in mt[H+], which depolarizes ΔΨm, will in turn reduce 

mtCa2+ uptake.7,61 In the presence of respiratory inhibitors 

(oligomycin, KCN), inhibition of mtNHE was shown to enhance 

mitochondrial acidification in permeabilized rat myocytes.7 Therefore, 

in our study an added increase in mt[H+] by mtNHE inhibition with ENI 

during ischemia may be in part responsible for decreasing mtCa2+ 

loading via CaU or mtNCE during reperfusion. It is also possible that 

the increased transmembrane H+ gradient at pH 8, which lowers 

cytosolic [H+], also lowers mitochondrial [H+] by mtNHE. This effect in 

turn could increase mt[Ca2+] via the CaU and mtNCE. In recent 

preliminary studies,62,63 we showed that eniporide altered matrix cation 

balance in isolated mitochondria, which supports the presence of NHE-

1 in the inner mitochondrial membrane. 

Inhibition of NHE may reduce mtCa2+ loading during ischemia by 

reducing cytoplasmic [Ca2+] but also by reducing Ca2+ flux through the 

ΔΨm –dependent CaU, particularly when ΔΨm is more depolarized by a 

higher mt[H+]. Acidification of the mitochondrial matrix reduces proton 

influx through complex V (ATP synthase), i.e. uncouples mitochondria, 

so NHE inhibitors (or matrix acidosis) may also protect indirectly by 

more efficiently restoring oxidative phosphorylation on reperfusion. 

Thus on the basis of current knowledge, inhibition of either 

sarcolemmal NHE or mtNHE would appear to be beneficial in reducing 

mtCa2+ loading. Future studies using CaU blockers and mitochondrial 

selective NHE inhibitors may help to delineate the relative importance 
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of these exchangers on reducing cytosolic vs. mtCa2+ loading through 

the cell and mitochondrial membranes. 

Conclusions and Limitations 

We have shown that enhanced activation of NHE with pH 8 

during ischemia leads to an additional increase in mtCa2+ loading. This 

contributes to a greater deterioration of mitochondrial bioenergetics 

and ROS production on reperfusion and poor functional return and 

greater tissue damage. Blocking NHE with ENI at an alkaline pH 

markedly improved functional return on reperfusion by minimizing the 

increase in mt[Ca2+], by better preserving the mitochondrial redox 

state, and by reducing ROS production. Both sarcolemmal and 

mitochondrial NHE may be involved in promoting mtCa2+ loading with 

I/R injury. 

As in the present study, a large number of experimental studies 

have shown beneficial effects by inhibiting NHE during deliberate I/R 

injury. Clinical trials of NHE inhibitors, however, have so far failed to 

show significant benefits for patients suffering I/R injury. A potential 

problem is the NHE inhibitors exhibit their most protective effects 

when the drug is given just before ischemia or immediately on 

reperfusion.11,64,65 But administration of a NHE inhibitor before 

cardioplegic arrest66 also failed to show significant protection in pigs 

subjected to cardiopulmonary bypass. Nevertheless, the quite 

beneficial cellular effects of avoiding extracellular and mitochondrial 

alkalosis during cardiac ischemia and early reperfusion in this model 

are clearly reflected by the preservation not only of myocardial 

function but also of mitochondrial bioenergetics. 
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