530 research outputs found

    Wave Propagation in Auxetic Tetrachiral Honeycombs

    Get PDF
    This paper describes a numerical and experimental investigation on the flexural wave propagation properties of a novel class of negative Poisson's ratio honeycombs with tetrachiral topology. Tetrachiral honeycombs are structures defined by cylinders connected by four tangent ligaments, leading to a negative Poisson's ratio (auxetic) behavior in the plane due to combined cylinder rotation and bending of the ribs. A Bloch wave approach is applied to the representative unit cell of the honeycomb to calculate the dispersion characteristics and phase constant surfaces varying the geometric parameters of the unit cell. The modal density of the tetrachiral lattice and of a sandwich panel having the tetrachiral as core is extracted from the integration of the phase constant surfaces, and compared with the experimental ones obtained from measurements using scanning laser vibrometers

    Antidepressant-like effects of pharmacological inhibition of FAAH activity in socially isolated female rats

    Get PDF
    Pharmacological inhibition of the enzyme fatty acid amide hydrolase (FAAH), which terminates signaling of the endocannabinoid N-arachidonoylethanolamine (or anandamide, AEA), exerts favourable effects in rodent models of stress-related depression. Yet although depression seems to be more common among women than men and in spite of some evidence of sex differences in treatment efficacy, preclinical development of FAAH inhibitors for the pharmacotherapy of stress-related depression has been predominantly conducted in male animals. Here, adult female rats were exposed to six weeks of social isolation and, starting from the second week, treated with the FAAH inhibitor URB694 (0.3 mg/kg/day, i.p.) or vehicle. Compared to pair-housed females, socially isolated female rats treated with vehicle developed behavioral (mild anhedonia, passive stress coping) and physiological (reduced body weight gain, elevated plasma corticosterone levels) alterations. Moreover, prolonged social isolation provoked a reduction in brain-derived neurotrophic factor (BDNF) and AEA levels within the hippocampus. Together, these changes are indicative of an increased risk of developing a depressive-like state. Conversely, pharmacological inhibition of FAAH activity with URB694 restored both AEA and BDNF levels within the hippocampus of socially isolated rats and prevented the development of behavioral and physiological alterations. These results suggest a potential interplay between AEA-mediated signaling and hippocampal BDNF in the pathogenesis of depression-relevant behaviors and physiological alterations and antidepressant action of FAAH inhibition in socially isolated female rats

    40. The gas-phase ammoxidation of n-hexane to unsaturated C6 dinitriles, intermediates for hexamethylenediamine synthesis

    Get PDF
    This paper reports about an investigation on the catalytic gas-phase ammoxidation of n-hexane aimed at the production of 1,6-C6 dinitriles, precursors for the synthesis of hexamethylenediamine. Catalysts tested were those also active and selective in the ammoxidation of propane to acrylonitrile: rutile-type V/Sb and Sn/V/Nb/Sb mixed oxides. Several N-containing compounds formed; however, the selectivity to cyano-containing aliphatic linear C6 compounds was low, due to the relevant contribution of side reactions such as combustion, cracking and formation of heavy compounds.INGLES

    A reliable multicast protocol for distributed mobile systems: design and evaluation

    Full text link

    N-(Anilinoethyl)amide Melatonergic Ligands with Improved Water Solubility and Metabolic Stability

    Get PDF
    The MT2-selective melatonin receptor ligand UCM765 (N-(2-((3-methoxyphenyl)(phenyl)amino)ethyl)acetamide), showed interesting sleep inducing, analgesic and anxiolytic properties in rodents, but suffers from low water solubility and modest metabolic stability. To overcome these limitations, different strategies were investigated, including modification of metabolically liable sites, introduction of hydrophilic substituents and design of more basic derivatives. Thermodynamic solubility, microsomal stability and lipophilicity of new compounds were experimentally evaluated, together with their MT1 and MT2 binding affinities. Introduction of a m-hydroxymethyl substituent on the phenyl ring of UCM765 and replacement of the replacement of the N,N-diphenyl-amino scaffold with a N-methyl-N-phenyl-amino one led to highly soluble compounds with good microsomal stability and receptor binding affinity. Docking studies into the receptor crystal structure provided a rationale for their binding affinity. Pharmacokinetic characterization in rats highlighted higher plasma concentrations for the N-methyl-N-phenyl-amino derivative, consistent with its improved microsomal stability and makes this compound worthy of consideration for further pharmacological investigation

    Calcium Looping for Thermochemical Storage: Assessment of Intrinsic Reaction Rate and Estimate of Kinetic/Transport Parameters for Synthetic CaO/Mayenite Particles from TGA Data

    Get PDF
    Mayenite-supported CaO represents an affordable and safetycompliant candidate material for thermochemical storage processes. We here analyze the thermogravimetric analysis (TGA) performance of synthetic CaO/mayenite micrometric powder under carbonatation/calcination looping and develop a model to interpret and analyze the experimental results. In the experimental campaign, calcination is run at 900 degrees C, while the carbonatation temperature is varied between 600 and 800 degrees C. For the carbonatation reaction, a generalized shrinking core model assuming a thermodynamically consistent first-order kinetic and a conversion-dependent diffusivity of CO2 inside the porous CaCO3 layer is validated through TGA carbonatation tests conducted with CO2/N-2 mixtures at different compositions. Interestingly, the kinetic constant of this reaction is found to be relatively insensitive to the temperature in the interval considered. In contrast, diffusion-limited regimes are never found for the calcination reaction so that this phase of the cycle can be predicted based on a single kinetic constant of the heterogeneous reaction. This constant is found to follow the typical Arrhenius-type dependence on temperature. Sizably different kinetic and transport parameters are obtained in the first carbonation performed on virgin CaO/mayenite particles with respect to those associated with subsequent cycles. When different parameters are afforded for the first and following cycles, the shrinking core model proposed closely predicts the TGA data over five CaO/CaCO3 cycles. The results found constitute an essential preliminary piece of information for designing equipment geometry and operating conditions of industrial-scale reactors. In this respect, knowledge of the parameters defining the intrinsic reaction rates and diffusive transport is essential in defining the optimal conversion of the material associated with minimal looping time

    The digital whomanities project. Best practices for digital pedagogy in the pandemic era

    Get PDF
    This paper aims to enter the ongoing debate about the critical issues of digital pedagogy through the presentation of Digital WHOmanities, a series of online conferences and workshops held at the University of Bologna. Distance learning has become one of the most discussed topics in educational institutions during the spread of Covid-19, revealing a discrepancy between the rapid development of technology and the ability of learning environments to adapt to this turn. In view of this ongoing debate, Digital WHOmanities tried to define the complex and multifaceted figure of the digital humanist and to provide a methodological framework that could foster further online academic initiatives. Specifically, the accurate organization of timing and contents and the adoption of synchronous and asynchronous approaches have highlighted the effectiveness of flexible digital didactics

    Bone Mineral Density and Trabecular Bone Score Changes throughout Menopause in Women with HIV

    Get PDF
    Objective: The objectives of this study were to describe the trajectories of bone mineral density (BMD) and trabecular bone score (TBS) changes throughout pre-menopause (reproductive phase and menopausal transition) and post-menopause (early and late menopause) in women with HIV (WWH) undergoing different antiretroviral therapies (ARTs) and explore the risk factors associated with those changes. Methods: This was an observational longitudinal retrospective study in WWH with a minimum of two DEXA evaluations comprising BMD and TBS measurements, both in the pre-menopausal and post-menopausal periods. Menopause was determined according to the STRAW+10 criteria, comprising four periods: the reproductive period, menopausal transition, and early- and late-menopausal periods. Mixed-effects models were fitted to estimate the trajectories of the two outcomes (BMD and TBS) over time. Annualized lumbar BMD and TBS absolute and percentage changes were calculated in each STRAW+10 time window. A backward elimination procedure was applied to obtain the final model, including the predictors that affected the trajectories of BMD or TBS over time. Results: A total of 202 WWH, all Caucasian, were included. In detail, 1954 BMD and 195 TBS data were analyzed. The median number of DEXA evaluations per woman was 10 (IQR: 7, 12). The median observation periods per patient were 12.0 years (IQR = 8.9-14.4) for BMD and 6.0 years (IQR: 4.3, 7.9) for TBS. The prevalence of osteopenia (63% vs. 76%; p < 0.001) and osteoporosis (16% vs. 36%; p < 0.001) increased significantly between the pre-menopausal and post-menopausal periods. Both BMD (1.03 (+/- 0.14) vs. 0.92 (+/- 0.12) g/cm2; p < 0.001) and TBS (1.41 (IQR: 1.35, 1.45) vs. 1.32 (IQR: 1.28, 1.39); p < 0.001) decreased significantly between the two periods. The trend in BMD decreased across the four STRAW+10 periods, with a slight attenuation only in the late-menopausal period when compared with the other intervals. The TBS slope did not significantly change throughout menopause. The delta mean values of TBS in WWH were lower between the menopausal transition and reproductive period compared with the difference between menopause and menopausal transition. Conclusions: Both BMD and TBS significantly decreased over time. The slope of the change in BMD and TBS significantly decreased in the menopausal transition, suggesting that this period should be considered by clinicians as a key time during which to assess bone health and modifiable risk factors in WWH

    NAAA-regulated lipid signaling governs the transition from acute to chronic pain

    Get PDF
    Chronic pain affects 1.5 billion people worldwide but remains woefully undertreated. Understanding the molecular events leading to its emergence is necessary to discover disease-modifying therapies. Here we show that N-acylethanolamine acid amidase (NAAA) is a critical control point in the progression to pain chronicity, which can be effectively targeted by small-molecule therapeutics that inhibit this enzyme. NAAA catalyzes the deactivating hydrolysis of palmitoylethanolamide, a lipid-derived agonist of the transcriptional regulator of cellular metabolism, peroxisome proliferator-activated receptor-α (PPAR-α). Our results show that disabling NAAA in spinal cord during a 72-h time window following peripheral tissue injury halts chronic pain development in male and female mice by triggering a PPAR-α-dependent reprogramming of local core metabolism from aerobic glycolysis, which is transiently enhanced after end-organ damage, to mitochondrial respiration. The results identify NAAA as a crucial control node in the transition to chronic pain and a molecular target for disease-modifying medicines

    Severe acute respiratory syndrome coronavirus 2 infection in patients with hematological malignancies in the Omicron era: Respiratory failure, need for mechanical ventilation and mortality in seronegative and seropositive patients

    Get PDF
    Background: Patients with hematological malignancies (HM) have a high risk of severe coronavirus disease 2019 (COVID-19), also in the Omicron period.Material and methods: Retrospective single-center study including HM patients with severe acute respiratory syndrome Coronavirus 2 (SARS-CoV2) infection from January 2022 to March 2023. Study outcomes were respiratory failure (RF), mechanical ventilation (MV), and COVID-related mortality, comparing patients according to SARS-CoV2 serology.Results: Note that, 112 patients were included: 39% had negative SARS-CoV2 serology. Seronegative were older (71.5 vs. 65.0 years, p = 0.04), had more often a lymphoid neoplasm (88.6% vs. 69.1%, p = 0.02), underwent anti-CD20 therapy (50.0% vs. 30.9% p = 0.04) and had more frequently a severe disease (23.0% vs. 3.0%, p = 0.02) than seropositive.Kaplan-Meier showed a higher risk for seronegative patients for RF (p = 0.014), MV (p = 0.044), and COVID-related mortality (p = 0.021). Negative SARS-CoV2 serostatus resulted in a risk factor for RF (hazards ratio [HR] 2.19, 95% confidence interval [CI] 1.03-4.67, p = 0.04), MV (HR 3.37, 95% CI 1.06-10.68, p = 0.04), and COVID-related mortality (HR 4.26, 95% CI 1.09-16.71, p = 0.04).Conclusions: HM patients with negative SARS-CoV2 serology, despite vaccinations and previous infections, have worse clinical outcomes compared to seropositive patients in the Omicron era. The use of serology for SARS-CoV2 diagnosis could be an easy tool to identify patients prone to developing complications
    • …
    corecore