12 research outputs found

    Combining biocatalysts to achieve new phase change materials. Application to non-edible animal fat

    Get PDF
    "Formerly known as Journal of Molecular Catalysis A: Chemical"The thermal properties of various alkyl threo-9, 10-dihydroxystearates (DHSEs) prepared from non-edible fat were studied. Non-edible animal fat was hydrolyzed in a 93% yield with R. oryzae resting cells. Crude unsaturated fatty acids were recovered from the matter liquor resulting from a crystallization performed to achieve the saturated fatty acids. These unsaturated free fatty acids were epoxidized with 30% H2O2 using immobilized Candida antarctica Lipase-B (CAL-B) as biocatalyst. The epoxy ring was cleaved with hot water in the presence of tert-butanol (t-BuOH). Pure threo-9, 10-dihydroxystearic acid (DHSA) from animal fat was recovered by crystallization (51% yield). Subsequently, DHSA was esterified in alpha-limonene using biocatalysts yielding twelve DHSEs (58-90% yield). Differential scanning calorimetry (DSC) analysis of these esters revealed potential latent heats ranging from 136.83 kJ kg−1 to 234.22 kJ kg−1 and melting temperatures from 52.45 ◦C to 76.88 ◦C. Finally, the compounds with enthalpies above 200 kJ kg−1 were subjected to 100 and 1000 thermal cycles. These experiments showed that these products present good thermal reliability.GREA and DBA are certified agents TECNIO in the category of technology developers from the Government of Catalonia. We thanks to Subproductos Cárnicos Echevarria y Asociados S.L (Cervera, Spain) for supplying the non-edible fat. Moreover, the research leading to these results has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under grant agreement no PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union’s Horizon 2020 research and innovation program under grant agreement no 657466 (INPATH-TES). The authors would like to thank the Catalan Government for the quality accreditation given to their research groups GREA (2014 SGR 123) and Agricultural Biotechnology Research Group (2014 SGR 1296). This work has been partially funded by the Spanish government (CTQ2015-70982-C3-1-R (MINECO/FEDER) and ENE2015-64117-C5-1-R (MINECO/FEDER). Aran Solé would like to thank Ministerio de Economía y Competitividad de España for Grant Juan de la Cierva, FJCI-2015-25741

    Fistulas intestinales en Urología

    No full text

    Fatty acid eutectic mixtures and derivatives from non-edible animal fat as phase change materials

    No full text
    A set of compounds from non-edible fat waste was prepared and their thermal behavior was studied. The fat was hydrolyzed and crystallized in a simple and robust process to yield palmitic acid-stearic acid (PA-SA) mixtures. The PA-SA mass ratios determined by GC-FID (gas chromatography-flame ionization detection) were similar to those reported for eutectic mixtures of PCMs (phase change materials). DSC (differential scanning calorimetry) results indicated that the melting and solidification temperatures were around 55 °C and 52 °C and the latent heat of the crystallized fractions measured was around 180 kJ kg−1. The thermal cycling reliability of the eutectic mixtures was also tested during 1000 melting/freezing cycles. The loss in melting and solidification enthalpies was below 14% in all mixtures showing a promising behavior for PCM applications. Additionally, the unsaturated fatty acids were recovered and transformed to threo-9,10-dihydroxystearic acid (DHSA) and some of their inorganic salts, which were analyzed by FT-IR (Fourier transform-infrared spectroscopy) and tested for the first time using the DSC technique.GREA and DBA are certified agents TECNIO in the category of technology developers from the Government of Catalonia. We thanks to Subproductos Cárnicos Echevarria y Asociados S.L (Cervera, Spain) for supplying the non-edible fat. Moreover, the research leading to these results has received funding from the European Commission Seventh Framework Programme (FP/2007–2013) under grant agreement no. PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union's Horizon 2020 research and innovation program under grant agreement no. 657466 (INPATH-TES). The authors would like to thank the Catalan Government for the quality accreditation given to their research groups GREA (2014 SGR 123), Agricultural Biotechnology Research Group (2014 SGR 1296) and DIOPMA (2014 SGR 1543). This work has been partially funded by the Spanish government (CTQ2015-70982-C3-1-R (MINECO/FEDER), ENE2015-64117-C5-1-R (MINECO/FEDER) and ENE2015-64117-C5-2-R (MINECO/FEDER)). Dr Camila Barreneche would like to thank Ministerio de Economia y Competitividad de España for her grant Juan de la Cierva FJCI-2014-22886. Aran Solé would like to thank Ministerio de Economía y Competitividad de España for Grant Juan de la Cierva, FJCI-2015-25741

    Fatty acid eutectic mixtures and derivatives from non-edible animal fat as phase change materials

    No full text
    A set of compounds from non-edible fat waste was prepared and their thermal behavior was studied. The fat was hydrolyzed and crystallized in a simple and robust process to yield palmitic acid-stearic acid (PA-SA) mixtures. The PA-SA mass ratios determined by GC-FID (gas chromatography-flame ionization detection) were similar to those reported for eutectic mixtures of PCMs (phase change materials). DSC (differential scanning calorimetry) results indicated that the melting and solidification temperatures were around 55 °C and 52 °C and the latent heat of the crystallized fractions measured was around 180 kJ kg−1. The thermal cycling reliability of the eutectic mixtures was also tested during 1000 melting/freezing cycles. The loss in melting and solidification enthalpies was below 14% in all mixtures showing a promising behavior for PCM applications. Additionally, the unsaturated fatty acids were recovered and transformed to threo-9,10-dihydroxystearic acid (DHSA) and some of their inorganic salts, which were analyzed by FT-IR (Fourier transform-infrared spectroscopy) and tested for the first time using the DSC technique
    corecore