25 research outputs found

    Structure of the upper mantle in the north-western and central United States from USArray S-receiver functions

    Get PDF
    We used more than 40 000 S-receiver functions recorded by the USArray project to study the structure of the upper mantle between the Moho and the 410 km discontinuity from the Phanerozoic western United States to the cratonic central US. In the western United States we observed the lithosphere–asthenosphere boundary (LAB), and in the cratonic United States we observed both the mid-lithospheric discontinuity (MLD) and the LAB of the craton. In the northern and southern United States the western LAB almost reaches the mid-continental rift system. In between these two regions the cratonic MLD is surprisingly plunging towards the west from the Rocky Mountain Front to about 200 km depth near the Sevier thrust belt. We interpret these complex structures of the seismic discontinuities in the mantle lithosphere as an indication of interfingering of the colliding Farallon and Laurentia plates. Unfiltered S-receiver function data reveal that the LAB and MLD are not single discontinuities but consist of many small-scale laminated discontinuities, which only appear as single discontinuities after longer period filtering. We also observe the Lehmann discontinuity below the LAB and a velocity reduction about 30 km above the 410 km discontinuity

    Receiver function images of the Hellenic subduction zone and comparison to microseismicity

    Get PDF
    New combined P receiver functions and seismicity data obtained from the EGELADOS network employing 65 seismological stations within the Aegean constrained new information on the geometry of the Hellenic subduction zone. The dense network and large data set enabled us to estimate the Moho depth of the continental Aegean plate across the whole area. Presence of a negative contrast at the Moho boundary indicating the serpentinized mantle wedge above the subducting African plate was seen along the entire forearc. Furthermore, low seismicity was observed within the serpentinized mantle wedge. We found a relatively thick continental crust (30–43 km) with a maximum thickness of about 48 km beneath the Peloponnese Peninsula, whereas a thinner crust of about 27–30 km was observed beneath western Turkey. The crust of the overriding plate is thinning beneath the southern and central Aegean and reaches 23–27 km. Unusual low Vp / Vs ratios were estimated beneath the central Aegean, which most likely represent indications on the pronounced felsic character of the extended continental Aegean crust. Moreover, P receiver functions imaged the subducted African Moho as a strong converted phase down to a depth of about 100 km. However, the converted Moho phase appears to be weak for the deeper parts of the African plate suggesting nearly complete phase transitions of crustal material into denser phases. We show the subducting African crust along eight profiles covering the whole southern and central Aegean. Seismicity of the western Hellenic subduction zone was taken from the relocated EHB-ISC catalogue, whereas for the eastern Hellenic subduction zone, we used the catalogues of manually picked hypocentre locations of temporary networks within the Aegean. Accurate hypocentre locations reveal a significant change in the dip angle of the Wadati–Benioff zone (WBZ) from west (~ 25°) to the eastern part (~ 35°) of the Hellenic subduction zone. Furthermore, a zone of high deformation can be characterized by a vertical offset of about 40 km of the WBZ beneath the eastern Cretan Sea. This deformation zone may separate a shallower N-ward dipping slab in the west from a steeper NW-ward dipping slab in the east. In contrast to hypocentre locations, we found very weak evidence for the presence of the slab at larger depths in the P receiver functions, which may result from the strong appearance of the Moho multiples as well as eclogitization of the oceanic crust. The presence of the top of a strong low-velocity zone at about 60 km depth in the central Aegean may be related to the asthenosphere below the Aegean continental lithosphere and above the subducting slab. Thus, the Aegean mantle lithosphere seems to be 30–40 km thick, which means that its thickness increased again since the removal of the mantle lithosphere about 15 to 35 Ma ago

    Stochastic Inversion of P-to-S Converted Waves for Mantle Composition and Thermal Structure: Methodology and Application

    Get PDF
    We present a new methodology for inverting P‐to‐S receiver function (RF) waveforms directly for mantle temperature and composition. This is achieved by interfacing the geophysical inversion with self‐consistent mineral phase equilibria calculations from which rock mineralogy and its elastic properties are predicted as a function of pressure, temperature, and bulk composition. This approach anchors temperatures, composition, seismic properties, and discontinuities that are in mineral physics data, while permitting the simultaneous use of geophysical inverse methods to optimize models of seismic properties to match RF waveforms. Resultant estimates of transition zone (TZ) topography and volumetric seismic velocities are independent of tomographic models usually required for correcting for upper mantle structure. We considered two end‐member compositional models: the equilibrated equilibrium assemblage (EA) and the disequilibrated mechanical mixture (MM) models. Thermal variations were found to influence arrival times of computed RF waveforms, whereas compositional variations affected amplitudes of waves converted at the TZ discontinuities. The robustness of the inversion strategy was tested by performing a set of synthetic inversions in which crustal structure was assumed both fixed and variable. These tests indicate that unaccounted‐for crustal structure strongly affects the retrieval of mantle properties, calling for a two‐step strategy presented herein to simultaneously recover both crustal and mantle parameters. As a proof of concept, the methodology is applied to data from two stations located in the Siberian and East European continental platforms.This work was supported by a grant from the Swiss National Science Foundation (SNF project 200021_159907). B. T. was funded by a Délégation CNRS and Congé pour Recherches et Conversion Thématique from the Université de Lyon to visit the Research School of Earth Sciences (RSES), The Australian National University (ANU). B. T. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement 79382

    Lithospheric structure of the Aegean obtained from P and S receiver functions

    Get PDF
    Combined P and S receiver functions from seismograms of teleseismic events recorded at 65 temporary and permanent stations in the Aegean region are used to map the geometry of the subducted African and the overriding Aegean plates. We image the Moho of the subducting African plate at depths ranging from 40 km beneath southern Crete and the western Peloponnesus to 160 km beneath the volcanic arc and 220 km beneath northern Greece. However, the dip of the Moho of the subducting African plate is shallower beneath the Peloponnesus than beneath Crete and Rhodes and flattens out beneath the northern Aegean. Observed P-to-S conversions at stations located in the forearc indicate a reversed velocity contrast at the Moho boundary of the Aegean plate, whereas this boundary is observed as a normal velocity contrast by the S-to-P conversions. Our modeling suggests that the presence of a large amount of serpentinite (more than 30%) in the forearc mantle wedge, which generally occurs in the subduction zones, may be the reason for the reverse sign of the P-to-S conversion coefficient. Moho depths for the Aegean plate show that the southern part of the Aegean (crustal thickness of 20–22 km) has been strongly influenced by extension, while the northern Aegean Sea, which at present undergoes the highest crustal deformation, shows a relatively thicker crust (25–28 km). This may imply a recent initiation of the present kinematics in the Aegean. Western Greece (crustal thickness of 32–40 km) is unaffected by the recent extension but underwent crustal thickening during the Hellenides Mountains building event. The depths of the Aegean Moho beneath the margin of the Peloponnesus and Crete (25–28 and 25–33 km, respectively) show that these areas are also likely to be affected by the Aegean extension, even though the Cyclades (crustal thickness of 26–30 km) were not significantly involved in this episode. The Aegean lithosphere-asthenosphere boundary (LAB) mapped with S receiver functions is about 150 km deep beneath mainland Greece, whereas the LAB of the subducted African plate dips from 100 km beneath Crete and the southern Aegean Sea to about 225 km under the volcanic arc. This implies a thickness of 60–65 km for the subducted African lithosphere, suggesting that the Aegean lithosphere was not significantly affected by the extensional process associated with the exhumation of metamorphic core complexes in the Cyclades

    Estimation of the Near-Surface Air Temperature during the Day and Nighttime from MODIS in Berlin, Germany

    No full text
    Air temperature (Tair or T2m) is an important climatological variable for forest biosphere processes and climate change research. Due to the low density and the uneven distribution of weather stations, traditional ground-based observations cannot accurately capture the spatial distribution of Tair. In this study, Tair in Berlin is estimated during the day and night time over six land cover/land use (LC/LU) types by satellite remote sensing data over a large domain and a relatively long period (7 years). Aqua and Terra MODIS (Moderate Resolution Imaging Spectroradiometer) data and meteorological data for the period from 2007 to 2013 were collected to estimate Tair. Twelve environmental variables (land surface temperature (LST), normalized difference vegetation index (NDVI), Julian day, latitude, longitude, Emissivity31, Emissivity32, altitude, albedo, wind speed, wind direction and air pressure) were selected as predictors. Moreover, a comparison between LST from MODIS Terra and Aqua with daytime and night time air temperatures (Tday, Tnight) was done respectively and in addition, the spatial variability of LST and Tair relationship by applying a varying window size on the MODIS LST grid was examined. An analysis of the relationship between the observed Tair and the spatially averaged remotely sensed LST, indicated that 3 × 3 and 1 × 1 pixel size was the optimal window size for the statistical model estimating Tair from MODIS data during the day and night time, respectively. Three supervised learning methods (Adaptive Neuro Fuzzy Inference system (ANFIS), Artificial Neural Network (ANN) and Support vector machine (SVR)) were used to estimate Tair during the day and night time, and their performances were validated by cross-validation for each LC/LU. Moreover, tuning the hyper parameters of some models like SVR and ANN were investigated. For tuning the hyper parameters of SVR, Simulated Annealing (SA) was applied (SA-SVR model) and a multiple-layer feed-forward (MLF) neural networks with three layers and different nodes in hidden layers are used with Levenber-Marquardt back-propagation (LM-BP), in order to achieve higher accuracy in the estimation of Tair. Results indicated that the ANN model achieved better accuracy (RMSE= 2.16°C, MAE = 1.69°C, R2 = 0.95) than SA_SVR model (RMSE= 2.50°C, MAE = 1.92°C, R2 = 0.91) and ANFIS model (RMSE= 2.88°C, MAE= 2.2°C, R2 = 0.89) over six LC/LU during the day and night time. The Q-Q diagram of SA-SVR, ANFIS and NN show that all three models slightly tended to underestimate and overestimate the extreme and low temperatures for all LC/LU classes during the day and night time. The weak performance in the extreme and low temperatures are a consequence of the small number of data in these temperatures. These satisfactory results indicate that this approach is proper for estimating air temperature and spatial window size is an important factor that should be considered in the estimation of air temperature

    Thickness of the lithosphere beneath Turkey and surroundings from S-receiver functions

    Get PDF
    We analyze S-receiver functions to investigate variations of lithospheric thickness below the entire region of Turkey and surrounding areas. The teleseismic data used here have been compiled combining all permanent seismic stations which are open to public access. We obtained almost 12 000 S-receiver function traces characterizing the seismic discontinuities between the Moho and the discontinuity at 410 km depth. Common-conversion-point stacks yield well-constrained images of the Moho and of the lithosphere–asthenosphere boundary (LAB). Results from previous studies suggesting shallow LAB depths between 80 and 100 km are confirmed in the entire region outside the subduction zones. We did not observe changes in LAB depths across the North and East Anatolian faults. To the east of Cyprus, we see indications of the Arabian LAB. The African plate is observed down to about 150 km depth subducting to the north and east between the Aegean and Cyprus with a tear at Cyprus. We also observed the discontinuity at 410 km depth and a negative discontinuity above the 410, which might indicate a zone of partial melt above this discontinuity

    Scandinavia: a former Tibet?

    No full text
    The Himalaya and the Tibetan Plateau are uplifted by the ongoing northward underthrusting of the Indian continental lithosphere below Tibet resulting in lithospheric stacking. The layered structure of the Tibetan upper mantle is imaged by seismic methods, most detailed with the receiver function method. Tibet is considered as a place where the development of a future craton is currently under way. Here we study the upper mantle from Germany to northern Sweden with seismic S receiver functions and compare the structure below Scandinavia with that below Tibet. Below Proterozoic Scandinavia, we found two low velocity zones on top of each other, separated by a high velocity zone. The top of the upper low velocity zone at about 100km depth extends from Germany to Archaean northern Sweden. It agrees with the lithosphere-asthenosphere boundary (LAB) below Germany and Denmark. Below Sweden it is known as the 8°discontinuity, or as a mid-lithospheric discontinuity (MLD), similar to observations in North America. Seismic tomography places the LAB near 200km in Scandinavia, which is close to the top of our deeper low velocity zone. We also observed the bottom of the asthenosphere (the Lehmann discontinuity) deepening from 180km in Germany to 260km below Sweden. Remnants of old subduction in the upper about 100km below Scandinavia and Finland are known from controlled source seismic experiments and local earthquake studies. Recent tomographic studies indicate delamination of the lithosphere below southern Scandinavia and northern Germany. We are suggesting that the large scale layered structure in the Scandinavian upper mantle may be caused by processes similar to the ongoing lithospheric stacking in Tibet

    Migration of Arc Magmatism Above Mantle Wedge Diapirs With Variable Sediment Contribution in the Aegean

    No full text
    Abstract Compiled data show the age progression of magmatic centers along the two approximately linear profiles from NE Greece and NW Turkey to the South Aegean Volcanic Arc. The age progression reveals the southwestward migration of arc magmatic activity from Oligocene to present, perpendicular to the Hellenic Trench. This is in accordance with the migration of the Aegean subduction zone due to the collision of oceanic and continental blocks, trench retreat, mantle flow, and coeval extension. We suggest that the subduction of large volumes of sediments and their contribution to the sub‐arc magma source controlled the composition of calc‐alkaline to high‐K calc‐alkaline and shoshonitic arc magmas during the past 30 Ma. The magma geochemistry and the approximately linear age‐progressive migration of magmatic activity suggest focused ascent of mixed material from the subducted slab into the mantle wedge, most likely in the form of mélange diapirs. Geochemical data along the profile reveals increasing Sr and decreasing Nd isotopes during Upper Miocene in agreement with the ongoing subduction of continental blocks, low subduction rates, and development of an accretionary wedge. The different K‐rich arc magmas reflect the variable subduction of sediments, whereas crustal assimilation often plays a minor role. Magmas with variable 87Sr/86Sr, P/Nd, and Ba/La indicate a variable contribution of clastic, phosphate‐bearing, and barite‐bearing sediments. Low‐degree partial melting in sediment‐dominated mélange diapirs causes the formation of shoshonitic magmas with high Sr and P2O5 contents and high La/Yb in the northern Aegean
    corecore