11 research outputs found
Food Product Traceability by Using Automated Identification Technologies
Part 7: Perceptional SystemsInternational audienceFood product traceability from harvesting, through food processing to the final food product and through the retailer to the end consumer is a significant process that has to ensure food quality and safety. The traceability enables the end consumer to get information from all previous stages of the food product, leading back to the food origin. In this way, the consumer can get more information on the specific product, and thus make a decision on buying the product that suits his needs best. In each stage of the food product transformation, important data are generated for the subsequent chain participants. Every participant should have access to certain data of interest to them. This can be achieved by using automated identification technologies, like RFID (Radio Frequency IDentification) and two-dimensional barcode, which allow faster data acquisition, recording and reading processes than the traditional means, and provide up-to-date information in each product stage. Furthermore, these technologies allow the possibility to record large amounts of data for each specific product, and interconnect all the data in a database. This paper discusses the process of providing traceability of food products, recording, transmitting and reading of significant data in specific stages of food product chain, with the application of automated identification technologies, including the possibility of obtaining additional data from a database, according to appropriate access level of each participant in the chain. Advantages and disadvantages of automated identification technologies are discussed, with the proposition for using specific technologies in certain food product stages
Albumen Freshness Assessment by Combining Visible Near-Infrared Transmission and Low-Resolution Proton Nuclear Magnetic Resonance Spectroscopy
Objetivos: Desarrollar un sistema de seguimiento solar adaptativo para paneles solares fotovoltaicos que no necesitan una configuración inicial. Métodos: Se utilizó el método estructuralista, en el cual se observa la realidad, se construye modelos y se analiza la estructura. Se utilizaron bloques de programación del controlador lógico programable (PLC) y de modelos de mecanismos para construir el modelo del seguidor solar; además se aplicó teorías de ingeniería de control como la estabilidad de sistemas dinámicos y control adaptativo. La prueba de estabilidad y el funcionamiento correcto se analiza utilizando todo el sistema en conjunto, luego, se validan estos análisis con las simulaciones y experimentaciones. Resultados: Se presentan resultados de simulación y experimentación, en los cuales se hace evidente que el controlador adaptativo mantiene el error de control de seguimiento muy bajo a pesar de las condiciones nubladas. En las simulaciones y experimentaciones no se requirió una configuración inicial; este hecho es uno de los requisitos que se busca alcanzar en los objetivos. La ventaja de la adaptación es que el seguidor solar seguirá la trayectoria del sol aun cuando este se encuentre oculto por las nubes. Conclusiones: El aporte fue brindar un diseño novedoso de un seguidor solar cronológico adaptativo. El algoritmo de control adaptativo evita la configuración inicial del seguidor solar cronológico.Objectives: Develop an adaptive solar tracker system for photovoltaic solar panels which does not require an initial configuration. Methods: A structuralist method was used, where the reality is observed, models are developed, and the structure is analyzed. Blocks programming of the programmable logic controller (PLC) and mechanisms models were used to develop the solar tracker model. And also control engineering theories were used like the dynamic systems stability and the adaptive control. The stability testing and the correct operation are analyzed using the whole system, then, these analyzes are validated with simulations and experimentations. Results: Simulation and experimental results are presented, these make evident that the adaptive controller keeps very low the tracking control error although the cloudy conditions. An initial configuration was not required in simulations and experimentations; this fact is one of the requirements that is needed to reach in the objectives. The advantage of the adaptation is that the solar tracker will follow the sun path; even though the sun could be hidden by the clouds. Conclusions: The contribution was to provide a novel design of an adaptive chronological solar tracker. The adaptive control algorithm avoids the initial configuration of the chronological solar tracker