12,708 research outputs found

    Tuning the electronic transport properties of graphene through functionalisation with fluorine

    Get PDF
    Engineering the electronic properties of graphene has triggered great interest for potential applications in electronics and opto-electronics. Here we demonstrate the possibility to tune the electronic transport properties of graphene monolayers and multilayers by functionalisation with fluorine. We show that by adjusting the fluorine content different electronic transport regimes can be accessed. For monolayer samples, with increasing the fluorine content, we observe a transition from electronic transport through Mott variable range hopping in two dimensions to Efros - Shklovskii variable range hopping. Multilayer fluorinated graphene with high concentration of fluorine show two-dimensional Mott variable range hopping transport, whereas CF0.28 multilayer flakes have a band gap of 0.25eV and exhibit thermally activated transport. Our experimental findings demonstrate that the ability to control the degree of functionalisation of graphene is instrumental to engineer different electronic properties in graphene materials.Comment: 6 pages, 5 figure

    Optimization of multivariate analysis for IACT stereoscopic systems

    Full text link
    Multivariate methods have been recently introduced and successfully applied for the discrimination of signal from background in the selection of genuine very-high energy gamma-ray events with the H.E.S.S. Imaging Atmospheric Cerenkov Telescope. The complementary performance of three independent reconstruction methods developed for the H.E.S.S. data analysis, namely Hillas, model and 3D-model suggests the optimization of their combination through the application of a resulting efficient multivariate estimator. In this work the boosted decision tree method is proposed leading to a significant increase in the signal over background ratio compared to the standard approaches. The improved sensitivity is also demonstrated through a comparative analysis of a set of benchmark astrophysical sources.Comment: 10 pages, 8 figures, 3 tables, accepted for publication in Astroparticle Physic

    Higher Spin BRS Cohomology of Supersymmetric Chiral Matter in D=4

    Full text link
    We examine the BRS cohomology of chiral matter in N=1N=1, D=4D=4 supersymmetry to determine a general form of composite superfield operators which can suffer from supersymmetry anomalies. Composite superfield operators \Y_{(a,b)} are products of the elementary chiral superfields SS and \ov S and the derivative operators D_\a, \ov D_{\dot \b} and \pa_{\a \dot \b}. Such superfields \Y_{(a,b)} can be chosen to have `aa' symmetrized undotted indices \a_i and `bb' symmetrized dotted indices \dot \b_j. The result derived here is that each composite superfield \Y_{(a,b)} is subject to potential supersymmetry anomalies if aba-b is an odd number, which means that \Y_{(a,b)} is a fermionic superfield.Comment: 15 pages, CPT-TAMU-20/9

    AMBER on the VLTI: data processing and calibration issues

    Get PDF
    We present here the current performances of the AMBER / VLTI instrument for standard use and compare these with the offered modes of the instrument. We show that the instrument is able to reach its specified precision only for medium and high spectral resolution modes, differential observables and bright objects. For absolute observables, the current achievable accuracy is strongly limited by the vibrations of the Unit Telescopes, and also by the observing procedure which does not take into account the night-long transfer function monitoring. For low-resolution mode, the current limitation is more in the data reduction side, since several effects negligible at medium spectral resolution are not taken into account in the current pipeline. Finally, for faint objects (SNR around 1 per spectral channel), electromagnetic interferences in the VLTI interferometric laboratory with the detector electronics prevents currently to get unbiased measurements. Ideas are under study to correct in the data processing side this effect, but a hardware fix should be investigated seriously since it limits seriously the effective limiting magnitude of the instrument.Comment: 10 page

    Consommation des jeunes et jeunes adultes en fin de semaine : Evolution entre 2011, 2013 et 2015

    Get PDF
    Parmi les 691 jeunes de 15 à 29 ans qui ont participé au module jeune en 2015, 629 sont sortis au cours des 30 jours précédant la passation de l’enquête. Les réponses données par ces derniers permettent de compléter les résultats déjà obtenus précédemment concernant les consommations des jeunes lors de leur dernière sortie de fin de semaine. De manière générale, il n’existe pas de tendance nette chez les jeunes vers une hausse ou une diminution de la consommation de substances entre 2011 et 2015. L’alcool reste la substance la plus consommée par les jeune

    Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical downscaling: impact of the regional climate model configuration

    Get PDF
    Atmospheric datasets coming from long term reanalyzes of low spatial resolution are used for different purposes. Wind over the sea is, for example, a major ingredient of oceanic simulations. However, the shortcomings of those datasets prevent them from being used without an adequate corrective preliminary treatment. Using a regional climate model (RCM) to perform a dynamical downscaling of those large scale reanalyzes is one of the methods used in order to produce fields that realistically reproduce atmospheric chronology and where those shortcomings are corrected. Here we assess the influence of the configuration of the RCM used in this framework on the representation of wind speed spatial and temporal variability and intense wind events on a daily timescale. Our RCM is ALADIN-Climate, the reanalysis is ERA-40, and the studied area is the Mediterranean Sea. <br><br> First, the dynamical downscaling significantly reduces the underestimation of daily wind speed, in average by 9 % over the whole Mediterranean. This underestimation has been corrected both globally and locally, and for the whole wind speed spectrum. The correction is the strongest for periods and regions of strong winds. The representation of spatial variability has also been significantly improved. On the other hand, the temporal correlation between the downscaled field and the observations decreases all the more that one moves eastwards, i.e. further from the atmospheric flux entry. Nonetheless, it remains ~0.7, the downscaled dataset reproduces therefore satisfactorily the real chronology. <br><br> Second, the influence of the choice of the RCM configuration has an influence one order of magnitude smaller than the improvement induced by the initial downscaling. The use of spectral nudging or of a smaller domain helps to improve the realism of the temporal chronology. Increasing the resolution very locally (both spatially and temporally) improves the representation of spatial variability, in particular in regions strongly influenced by the complex surrounding orography. The impact of the interactive air-sea coupling is negligible for the temporal scales examined here. Using two different forcing datasets induces differences on the downscaled fields that are directly related to the differences between those datasets. Our results also show that improving the physics of our RCM is still necessary to increase the realism of our simulations. Finally, the choice of the optimal configuration depends on the scientific objectives of the study for which those wind datasets are used
    corecore