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Abstract

We demonstrate the possibility to tune the electronic transport properties of graphene mono-layers and multi-
layers by functionalisation with fluorine. For mono-layer samples, with increasing the fluorine content, we observe
a transition from electronic transport through Mott variable range hopping (VRH) in two dimensions to Efros-
Shklovskii VRH. Multi-layer fluorinated graphene with high concentration of fluorine show two-dimensional Mott
VRH transport, whereas CF0.28 multi-layer flakes exhibit thermally activated transport through near neighbour
hopping. Our experimental findings demonstrate that the ability to control the degree of functionalisation of
graphene is instrumental to engineer different electronic properties in graphene materials.

1 Introduction
Graphene, a mono-layer of sp2 bonded carbon atoms
arranged in a honeycomb pattern (Figure 1a), is a two-
dimensional semi-metal where the valence and conduction
bands touch in two independent points at the border of
the Brillouin zone, named K and K’ valleys [1-5]. This
material has remarkable electronic, optical and mechanical
properties which can be used in a new generation of
devices [6,7]. For instance, the high mobility of charge car-
riers is attracting considerable interest in the realm of
high-speed electronics [8]. Furthermore, thanks to the
unique combination of high electrical conductivity [4,5]
and optical transparency [9], graphene is a promising
material for optoelectronic applications such as displays,
photovoltaic cells and light-emitting diodes. Few-layer gra-
phene are yet unique materials [10] with unprecedented
physical properties: bilayers are semiconductors with a
gate-tuneable band gap [11-21], whereas trilayers are
semi-metals with a gate-tuneable overlap between the con-
duction and valence bands [22,23]. However, the use of
graphene for applications in daily-life electronics suffers
from a major drawback, i.e. the current in graphene can-
not be simply pinched off by means of a gate voltage. A
valuable solution to this problem is to engineer a band gap
in the energy spectrum of graphene for example confining

the physical dimensions of graphene into nanoribbons
[24-28] or by chemical functionalisation [29-46].
When chemical elements, e.g. oxygen, hydrogen or

fluorine, are adsorbed on the surface of graphene, they
form covalent bonds with the carbon atoms. As a result,
the planar crystal structure of graphene characterised by
sp2 bonds between the carbon atoms is transformed
into a three-dimensional structure with sp3 bonds (see
Figure 1b). The adsorbed elements can attach to gra-
phene in a random way, as it is the case in graphene
oxide [44-46], or they can form ordered patterns as it
has been found for hydrogen [33-35] and fluorine
[36-43] adsorbates. Ab initio calculations performed
within the density functional theory formalism predict
that functionalisation with hydrogen and fluorine should
lead, respectively, to a band gap of 3.8 and 4.2 eV for
full functionalisation [29-32].
Successful hydrogenation and fluorination of graphene

have been recently achieved by several groups [33-43].
Hydrogenation is usually carried out in a remote plasma
of H2 [33-35] which makes it difficult to control the
degree of induced atomic defects as well as the stoichio-
metry of the functionalisation. Furthermore, hydroge-
nated graphene can loose H at moderate temperatures
[33], which limits the use of this material in applications
where high-temperature stability is required. On the
other hand, fluorine has higher binding energy to carbon
and higher desorption energy than hydrogen [29-32].
Opposed to hydrogenation, the process of fluorination is
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easy to control, e.g. via temperature and reactant gases,
leading to reproducibly precise C/F stoichiometries.
Here, we explore the electronic transport properties of

functionalised graphene with a fluorine content ranging
from 7% (i.e. CF0.07 or F/C atomic ratio of 0.07) to
100% (CF1). We have fabricated transistor structures

with fluorinated graphene mono-layers and multi-layers
and studied their electrical transport properties in the
temperature range from 4.2 to 300 K. We show that the
electronic transport properties of fluorinated graphene
can be tuned by adjusting the fluorine content, so that
different transport regimes can be accessed, like Mott
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Figure 1 Fabrication of fluorinated graphene layers and transistor devices. Crystal structure of pristine graphene (a) and fluorinated
graphene (b). The grey balls in (b) represent the carbon atoms, whereas the green balls are the fluorine atoms. Optical image of pristine
graphene (c) and of fluorinated graphene (d). (e) False colour SEM image of a fluorinated graphene device. (f) Schematic view of the transistor
structure fabricated on fluorinated graphene.
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variable range hopping (VRH) in two dimensions
[47,48], Efros-Shklovskii VRH [49] and nearest neigh-
bour hopping (NNH) transport.

2 Experimental details
Fluorinated graphene mono-layers and multi-layers were
mechanically exfoliated from fluorinated graphite and
deposited onto conventional Si/SiO2 (275 nm) sub-
strates. The fluorinated graphite was synthesised via two
routes: graphite fluorides (using F2 gas) and fluorine gra-
phite intercalation compounds (FGIC) (using XeF2 as
fluorinating agent), see Section 6. The samples produced
using F2 gas that we investigate here are multi-layers
and have the concentration of fluorine of 28 and 100%,
whereas the samples synthesised using XeF2 gas are all
mono-layers and have the fluorine content of 7, 24 and
28%.
Flakes of fluorinated graphene are located using an

optical microscope (see Figure 1d) and subsequently
characterised by Raman spectroscopy. Mono-layer gra-
phene flakes were identified by fitting the 2D peak of
the Raman spectra by a single Lorentzian function (see
Figure 2b), with a full width at half maximum (FWHM)
of 30-45 cm-1 which is typical for pristine mono-layer
graphene [50]. The height of the studied multi-layer
flakes is determined by Atomic Force Microscopy: 10-
nm height for flakes exfoliated from the CF and 0.86-6.1
nm for flakes obtained from CF0.28. In total, four mono-
layer, five CF and five CF0:28 multi-layer flakes were pro-
cessed into four-terminal transistor devices, where the
electrical contacts were defined by e-beam lithography,
deposition of Cr/Au (5/50 nm) and lift-off procedure,
see Figure 1e,f.
The typical optical contrast of fluorinated graphene is

~2-6%, which is systematically lower than what we
observe on pristine graphene (~9%), see Figure 1c,d.
The reduced contrast in fluorinated graphene has to be
expected, since the opening of a large energygap in the
energy dispersion of fluorinated graphene lowers the
optical absorption transitions between conduction and
valence bands.

3 Raman spectroscopy
Figure 2 shows the Raman spectra of a mechanically
exfoliated pristine graphene flake, with the G and 2D
(also known as G’) bands at 1580 and 2700 cm-1. The G
band is associated with the double degenerate E2g pho-
non mode at the Brillouin zone center, while the 2D
mode originates from a second-order process, involving
two intervalley phonons near the K point, without the
presence of any kind of disorder or defect [50]. In the
fluorinated graphene, additional peaks are activated in
the Raman spectra (see Figure 2), the D and D’ peaks
that appear at 1350 and 1620 cm-1. These Raman peaks

originate from double-resonance processes at the K
point in the presence of defects, involving, respectively,
intervalley (D) and intravalley (D’) phonons [51-54].
In exfoliated pristine graphene, the D peak can only

be observed at the edges of the flakes where there is a
large concentration of structural defects and its intensity
is typically much lower than the intensity of the G peak
[55,56]. In our studies performed on pristine graphene
flakes with similar size as the fluorinated graphene
flakes, the intensity of the D peak is typically well below
the sensitivity of our Raman setup, i.e. we are usually
not able to detect any D peak because of the edges of
the flakes. Therefore, the observed D peak in our fluori-
nated graphene samples must originate from other
defects than simply the edges of the samples. As all our
samples contain networks of sp2 bonded carbon atom
rings, we believe that the D peak is mainly activated by
the F atoms which act as vacancies in these sp2 rings.
A better understanding of the level of disorder in our

samples is reached when analysing the intensity ratio ID/IG
for the D and G bands. It has recently been shown that in
graphene ID/IG has a non-monotonic dependence on the
average distance between defects LD, increasing with
increasing LD up to LD ~ 4 nm and decreasing for LD >
4 nm [53,54,57]. Such behavior has been explained by the
existence of two disorder-induced regions contributing
to the D peak: a structurally disordered region of a radius
~1 nm around the defect and a larger defect-activated
region which extends to ~3 nm around the defect. In the
defect-activated region, the lattice structure is preserved,
but the proximity to a defect causes a mixing of Bloch
states near the K and K’ valleys. Consequently, the break-
ing of the selection rules leads to an enhancement of the
D peak. Furthermore, it was shown that in the structurally
disordered region, the G and D’ peaks overlap.
The Raman spectra of fluorinated mono-layer samples

produced from graphite with fluorine content of 7 and
28% (see Figure 2a) systematically show that the G and
D’ peaks have a significant overlap. On the other hand,
the samples exfoliated from CF0.24 exhibit very distinct
G and D’ peaks. Based on the aforementioned phenom-
enological model [53,54,57], we can state that the CF0.07
and CF0.28 samples are in the regime where the intensity
ratio ID/IG increases with increasing LD (i.e. decreasing
the concentration of F) whereas the CF0.24 samples are
in the opposite regime. This scenario is confirmed when
comparing the intensity ratio ID/IG for fluorinated
mono-layers extracted from graphite with different
fluorine content: ID/IG = 1.74 for CF0:28 and ID/IG =
2.16 for CF0.07. From the LD dependence on ID/IG we
estimate LD ~ 1.5 nm for CF0.28 and LD ~2 nm for
CF0.07 [53,54,57]. For the CF0.24 samples, we estimate LD
~ 5.3 nm for device 1 and LD ~ 6.1 nm for device 2.
These values of LD are in agreement with the observed
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Figure 2 Raman spectroscopy in fluorinated and pristine graphene. (a) Raman spectra of mono-layer fluorinated graphene with different
fluorine content and pristine mono-layer graphene. (b) Fitting of the 2D peak with a single Lorentzian function for pristine and fluorinated
mono-layer graphene. (c, d) Raman spectra of fluorinated multi-layer graphene.
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frequencies of the D, G, D’ and 2D peaks as well as with
the FWHM values of the 2D peaks [53].
In the case of the fluorinated multi-layer flakes, see

Figure 2c,d, it is difficult to perform a similar analysis,
as the intensity of the G band depends on the number
of graphene layers present in the sample [50]. For sam-
ples thicker than three to four layers, the structure of
the 2D peak does not provide an accurate estimation for
the number of layers because of the large number of fit-
ting parameters.

4 Electrical transport measurements
Having characterised the level of disorder from Raman
spectroscopy, we now proceed to address the role of dis-
order on the electrical transport properties of fluori-
nated graphene materials. Figure 3 shows the resistivity
(r) as a function of gate voltage (Vg) for the fluorinated
mono-layer samples for different temperatures. The

resistivity exhibits a non-monotonous dependence on Vg

with a maximum at Vg = +10 V, stemming for a doping
level of n = 0.74 1012 cm-2 commonly seen also in pris-
tine graphene devices and attributed to doping by atmo-
spheric water. In all cases, the resistivity of fluorinated
graphene shows a pronounced temperature dependence.
Indeed, the maximum of resistivity changes over two
orders of magnitude as T decreases from 300 to 4.2 K.
Away from the maximum of resistivity region, the tem-
perature dependence remains weak, with the mobility of
carriers of 150 cm2/Vs. Furthermore, at low temperature
the resistance shows strong mesoscopic fluctuations, as
expected for samples of small size [58]. In the analysis
of the maximum of resistivity, we smooth the r(Vg)
curves using a moving average filter.
To examine the presence of the energy gap, we ana-

lyse the temperature dependence of the maximum of
resistivity by an exponential law describing thermal
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Figure 3 Electronic transport in fluorinated mono-layer graphene. Resitivity of four fluorinated mono-layer graphene samples as a function
of gate voltage at different temperatures. The different panels correspond to different concentration of fluorine in the starting fluorinated
graphite material, as indicated in each panel.
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activation of carriers across an energy gap Δε: r(T) =
r0exp(Δε/2kBT), see Figure 4a. This analysis clearly
shows that our data are not described by the thermal
activation law over the whole temperature range. We
note that the slope of lnr (1/T) versus 1/T decreases
with decreasing T, which is a signature of hopping con-
duction via localised states [48]. The fact that in the
whole range of studied temperatures electron transport
is not due to thermal activation across the gap but due
to hopping becomes clear when re-analysing the tem-
perature dependence in terms of the 2D Mott VRH
(2D-VRH) [47,48]. In this model, the functional depen-
dence of r on temperature is r(T) = r0exp(T0/T)

1/3,
where kBT0 = 13.6/a2g(εF), g is the density of localised
states at the Fermi level εF and a is the localisation
length [47,48]. Experimentally we find that the measured
r(T) for the samples produced from CF0.07 and CF0.24
graphite (see Figure 3b for CF0.24) is described well by
the 2D-VRH model.
Figure 4c shows the hopping parameter T0 as a func-

tion of carrier concentration for these three samples. The
value of T0 approaches zero at a carrier concentration of
±1.2 1012 cm-2. This value gives the concentration of the
localised electron states in the energy range from ε = 0 to
the mobility edge, see Figure 4d. The mobility edge
occurs at Vg ± 20V and indicates the transition from hop-
ping to metallic conduction.
In order to relate the obtained concentration of the

localised states to the energy gap Δε, one needs to know
the exact energy dependence of the density of states in
the gap. For estimations, we will use the linear relation
for the density of extended states above the mobility edge
g(ε) = 2ε/πħ2v2 (v = 106 m/s is the Fermi velocity), and a
constant value for the density of localised states below
the mobility edge, Figure 4d. This gives Δε = 60 meV and
twice this value for the full mobility gap. In this approxi-
mation, the density of the localised states in the gap is
~1036 J/m2. Using the obtained value of the hopping
parameter at the maximum of resistivity, we can then
estimate the localisation length at ε = 0 as a = 40 nm for
CF0.24 (device 1), a = 81 nm for CF0.24 (device 2) and a =
265 nm for CF0.07.
Figure 4e shows the analysis of the temperature depen-

dence of the resistivity for fluorinated mono-layer gra-
phene exfoliated from CF0.28 graphite. For this sample,
characterised by the largest disorder LD ~1.5 nm, the
experimental data cannot be described by thermally acti-
vated law nor Mott VRH. In this case, the ln(r) follows a
T-1/2 dependence characteristic of the Efros-Shklovskii
VRH in the presence of Coulomb interaction between the
localised states (r(T) = r0exp(T0/T)

1/2) [49]. T0 is related
to the localisation lengths through T0 = 2.8e2 / 4 πεrε0kBa
and for our sample we estimate T0 = 52 K. Assuming that

εr is the dielectric constant of SiO2 we obtain the localisa-
tion length a = 282 nm.
We turn now our discussion to multi-layer fluorinated

graphene exfoliated from fully fluorinated graphite and
from CF0.28 prepared by exposure to fluorine gas. The
fully fluorinated multi-layer show systematically a very
large resistance (more than 100 GΩ) independently of the
specific thickness and no gate-voltage control of the resis-
tivity. To achieve gate modulation in these samples, we
reduced the fluorine content by annealing the samples at
300°C, in a 10 % atmosphere of H2/Ar for 2 h. This
annealing process restores a partial gate-voltage control of
the resistance (Figure 5a) while leaving unchanged the
Raman spectrum in Figure 2d.
Resistance measurements of CFn flakes after annealing

show a strong temperature dependence, Figure 5a. Analy-
sis of the temperature dependence of the resistance in
terms of the activation law at the highest gate voltage Vg =
50 V (which is still far from the Dirac point) gives a gap of
only 25 meV, which is significantly smaller than the
expected energy gap for fully fluorinated graphene. Simi-
larly to the fluorinated mono-layer graphene, the resistivity
dependence on temperature is fitted well by VRH with the
value of T0 = 20000 K. This confirms that the previously
found activation energy of 25 meV is not the activation
energy Δε that separates the localised states from extended
states at the mobility edge, but is an activation energy δε
of hopping between localised states within the mobility
gap, see Figure 4d.
Figure 5c,d shows the transport data for the multi-layer

fluorinated graphene CF0.28 prepared by exposure to fluor-
ine gas. The I-V characteristics of these samples are
strongly non-linear (see Figure 5c) with resistances of
more than 1 GΩ. In this case, the dependence of the resis-
tivity on temperature cannot be described neither by
2D-VRH nor by Efros-Shklovskii VRH (see Figure 5d).
The ln(r)(T) dependence is rather well described by a
thermally activated law at elevated temperatures (regime
A), with a Δε = 0.25 eV, followed by a temperature regime
where the resistivity decreases with lowering the tempera-
ture (regime B). A 1/T dependence of ln(r) could be the
consequence of either intrinsic transport through ther-
mally excited carriers above the bandgap or conduction
through NNH via localised states within the gap. Since the
I-V characteristics of our devices show a non-linearity on
a Vsd range much larger than the estimated Δε = 0.25 eV
(see Figure 5c), we conclude that transport occurs via
NNH.
Finally, for the same degree of fluorination (i.e. CF0.28)

the graphene multi-layers exhibit a stronger temperature
dependence and a larger transport gap than what is
observed in mono-layers. This difference could originate
from the different fluorination processes used for the
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multi-layers (direct fluorination with F2 gas at high tem-
perature to produce graphite fluorides) and for the
monolayers (FGIC synthesised at lower temperatures),
see Section 6. Indeed, different fluorination processes
may lead to different concentrations of localised states.
Even though in both materials, F-GIC and graphite
fluorides, the nature of the bonding between fluorine
and carbon atoms is covalent, the C-F bond order is
slightly lower in F-GIC [59]. The lower C-F bond order
in F-GIC is due to the hyper-conjugation which occurs
between the C-F and the C-C single bonds around the
C-F bonds. In particular, the C-F and C-C single bond
lengths are, respectively, longer and shorter in F-GIC
than those in graphite fluorides. As a result, the

electrons involved in the covalent C-F bonds in F-GIC
are slightly delocalised by this hyperconjugation, which
may result in a smaller transport gap.

5 Conclusions
In conclusion, we have demonstrated the possibility to
tune the band structure and therefore the electronic trans-
port properties of graphene through functionalisation with
fluorine. In particular, depending on the fluorine concen-
tration different transport regimes can be accessed. For
mono-layer samples, we observe a transition from 2D
Mott VRH to Efros-Shklovskii VRH with increasing the
fluorine content. Multi-layer fluorinated graphene with
high concentration of fluorine shows 2D Mott VRH,
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whereas CF0:28 multi-layer flakes exhibit NNH transport.
Our experimental findings demonstrate that the ability to
control the degree of functionalisation of graphene is
instrumental to engineer different electronic properties in
graphene materials. In all cases, fluorinated graphene tran-
sistors exhibit a large on/off ratio of the current, making
this material of interest for future applications in transpar-
ent and bendable electronics.

6 Methods
6.1 Fluorination of graphite
To produce fluorinated graphite, we have used two dis-
tinct methods [59-62]. In the first method, graphite is
heated in the presence of F2 to temperatures in excess of
300°C, so that covalent C-F bonds are formed and modify
the carbon hybridisation [60]. The layered structure of
graphite is then transformed into a 3D arrangement of
carbon atoms (Figure 1a,b). In this article, we present the
studies on graphene exfoliated from fully fluorinated
HOPG graphite CFn (obtained at 600°C) and CF0.28
synthesised with this method at 530°C. However, due to
the harsh fluorination conditions, many structural defects
are formed, which makes it very difficult to exfoliate large
enough mono-layer flakes that can be identified by opti-
cal microscopy and easily processed into devices. To pre-
pare larger fluorinated graphene samples, we have used a
second fluorination method where graphite is exposed to
a fluorinating agent, i.e. XeF2. In this case, the functiona-
lisation process is carried out at T ≤ 120°C, as XeF2 easily
decomposes on the graphite surface into atomic fluorine
[59]. The mixture of natural graphite and XeF2 was pre-
pared in a glove box in an Ar atmosphere. Owing to its
reactivity and diffusion, the fluorination results in a
homogenous dispersion of fluorine atoms that become
covalently bonded to carbon atoms [59,62,63]. At low
fluorine content, the F/C atomic ratio is ≤ 0.4. In
this case, the conjugated C-C double bonds in the non-
fluorinated parts and covalent C-F bonds in corrugated
fluorocarbon regions coexist [62,64]. The concentration
of the covalent bonds increases with increasing the con-
centration of fluorine. The samples produced using the
XeF2 gas that we investigate here have the concentration
of fluorine of 7, 24 and 28%.

6.2 Determination of fluorine concentration
The fluorine concentration (i.e. F:C molar ratio) of fluori-
nated graphite was determined by gravimetry (weight
uptake). The concentration obtained by weight uptake
was confirmed by solid-state NMR measurements on
samples fabricated under identical conditions and the
accuracy of gravimetry was estimated to be 0.02 [65-67].
The fluorine concentration measured by gravimetry can
be under-estimated due to the decomposition of graphite

under fluorine gas at high temperature, which results in
the formation of carbene (CF2) and C2F4. However, the
decomposition of graphite was found to start as a sec-
ondary reaction close to 600°C, with fluorination being
the main reaction. Since the reactions with F2 and XeF2
have been carried at lower temperatures than the gra-
phite decomposition temperature, the underestimation of
F:C ratio in our fluorinated graphite samples is likely to
be less than 0.02.

6.3 Raman spectroscopy characterisation
We have characterised all the exfoliated flakes by Raman
spectroscopy using an excitation light with a wavelength
of 532 nm and a spot size of 1.5 μm in diameter. An inci-
dent power of 5 mW was used. We ensured that this
power does not damage the graphene by performing
Raman measurements on a similarly sized pristine gra-
phene flake which shows the common spectra of mechani-
cally exfoliated graphene: the G band and 2D band (also
known as G’) at 1580 and 2700 cm-1, see Figure 2.

6.4 Electrical characterisation
The resistance of the transistor devices was measured
both in dc, by means of Keithley 2400 Source-meter,
and in ac at low frequency (34 Hz) with a lock-in ampli-
fier in a voltage-biased configuration. For the ac-mea-
surements, the excitation current was varied to ensure
that the resulting voltage was smaller than the tempera-
ture to prevent heating of the electrons and the occur-
rence of nonequilibrium effects. The comparison of 2-
and 4-probe measurements shows that the contact resis-
tance in our devices is negligible as compared to the
sample resistance. This experimental finding insures
that even 2-probe transport measurements are probing
the electrical properties of the bulk fluorinated graphene
rather then simply the Cr/graphene interface.
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