49,912 research outputs found

    Mechanical properties of neat polymer matrix materials and their unidirectional carbon fiber-reinforced composites

    Get PDF
    The mechanical properties of two neat resin systems for use in carbon fiber epoxy composites were characterized. This included tensile and shear stiffness and strengths, coefficients of thermal and moisture expansion, and fracture toughness. Tests were conducted on specimens in the dry and moisture-saturated states, at temperatures of 23, 82 and 121 C. The neat resins tested were American Cyanamid 1806 and Union Carbide ERX-4901B(MPDA). Results were compared to previously tested neat resins. Four unidirectional carbon fiber reinforced composites were mechanically characterized. Axial and transverse tension and in-plane shear strengths and stiffness were measured, as well as transverse coefficients of thermal and moisture expansion. Tests were conducted on dry specimens only at 23 and 100 C. The materials tested were AS4/3502, AS6/5245-C, T300/BP907, and C6000/1806 unidirectional composites. Scanning electron microscopic examination of fracture surfaces was performed to permit the correlation of observed failure modes with the environmental test conditions

    Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures

    Get PDF
    Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber, Nippon Carbon, Ltd., (Dow Corning) Nicalon NLM-102 silicon carbide fiber, and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data

    Analyses of composite structures

    Get PDF
    Stiffness and strength analyses on composite cross-ply and helical wound cylinders and flat laminate structure

    Polymer matrix and graphite fiber interface study

    Get PDF
    Hercules AS4 graphite fiber, unsized, or with EPON 828, PVA, or polysulfone sizing, was combined with three different polymer matrices. These included Hercules 3501-6 epoxy, Hercules 4001 bismaleimide, and Hexcel F155 rubber toughened epoxy. Unidirectional composites in all twelve combinations were fabricated and tested in transverse tension and axial compression. Quasi-isotropic laminates were tested in axial tension and compression, flexure, interlaminar shear, and tensile impact. All tests were conducted at both room temperature, dry and elevated temperature, and wet conditions. Single fiber pullout testing was also performed. Extensive scanning electron microphotographs of fracture surfaces are included, along with photographs of single fiber pullout failures. Analytical/experimental correlations are presented, based on the results of a finite element micromechanics analysis. Correlations between matrix type, fiber sizing, hygrothermal environment, and loading mode are presented. Results indicate that the various composite properties were only moderately influenced by the fiber sizings utilized

    Correlation between floppy to rigid transitions and non-Arrhenius conductivity in glasses

    Full text link
    Non-Arrhenius behaviour and fast increase of the ionic conductivity is observed for a number of potassium silicate glasses (1−x)SiO2−xK2O(1-x)SiO_2-xK_2O with potassium oxide concentration larger than a certain value x=xc=0.14x=x_c=0.14. Recovering of Arrhenius behaviour is provided by the annealing that enhances densification. Conductivity furthermore obeys a percolation law with the same critical concentration xcx_c. These various results are the manifestation of the floppy or rigid nature of the network and can be analyzed with constraint theory. They underscore the key role played by network rigidity for the understanding of conduction and saturation effects in glassy electrolytes.Comment: 4 pages, 4 EPS figure

    Solving non-perturbative flow equations

    Get PDF
    Non-perturbative exact flow equations describe the scale dependence of the effective average action. We present a numerical solution for an approximate form of the flow equation for the potential in a three-dimensional N-component scalar field theory. The critical behaviour, with associated critical exponents, can be inferred with good accuracy.Comment: Latex, 14 pages, 2 uuencoded figure
    • …
    corecore