2,471 research outputs found
Further analysis of field effects on liquids and solidification
Numerical calculations of the magnitude of external field effects on liquids are presented to describe how external fields can influence the substructure of the field. Quantitative estimates of magnetic and gravitational effects are reported on melts of metals and semiconductors. The results are condensed in tables which contain the input data for calculation of the field effects on diffusion coefficient, solidification rate and for calculation of field forces on individual molecules in the melt
On the Fredholm property of bisingular pseudodifferential operators
For operators belonging either to a class of global bisingular
pseudodifferential operators on or to a class of bisingular
pseudodifferential operators on a product of two closed smooth
manifolds, we show the equivalence of their ellipticity (defined by the
invertibility of certain associated homogeneous principal symbols) and their
Fredholm mapping property in associated scales of Sobolev spaces. We also prove
the spectral invariance of these operator classes and then extend these results
to the even larger classes of Toeplitz type operators.Comment: 21 pages. Expanded sections 3 and 4. Corrected typos. Added
reference
Gauged O(n) spin models in one dimension
We consider a gauged O(n) spin model, n >= 2, in one dimension which contains
both the pure O(n) and RP(n-1) models and which interpolates between them. We
show that this model is equivalent to the non-interacting sum of the O(n) and
Ising models. We derive the mass spectrum that scales in the continuum limit,
and demonstrate that there are two universality classes, one of which contains
the O(n) and RP(n-1) models and the other which has a tuneable parameter but
which is degenerate in the sense that it arises from the direct sum of the O(n)
and Ising models.Comment: 9 pages, no figures, LaTeX sourc
Further analysis of field effects on liquids and solidification. Study of the liquid-solid transition for materials processing in space
Expressions for diffusion coefficient, D, and solidification rate, Uc, from the free volume model of liquids developed by Turnbull and Cohen have been used to estimate the effects which microgravity and magnetic fields will have on these quantities. The mathematical formalism describing changes in D and Uc is the same for both the microgravity and magnetic field cases, but the difference between the magnitudes of the two effects is quite large. The change in D and Uc is found to be less than 0.0001% for the microgravity case and on the order of 0.1 to 1.1% for the magnetic field case for four representative materials. D and Uc are found to increase under the influence of an applied magnetic field, and this is in agreement with experimental observations
Spectroscopy of Ne for the thermonuclear O()Ne and F()O reaction rates
Uncertainties in the thermonuclear rates of the
O()Ne and F()O reactions
affect model predictions of light curves from type I X-ray bursts and the
amount of the observable radioisotope F produced in classical novae,
respectively. To address these uncertainties, we have studied the nuclear
structure of Ne over MeV and MeV using
the F(He,t)Ne reaction. We find the values of the
4.14 and 4.20 MeV levels to be consistent with and
respectively, in contrast to previous assumptions. We confirm the recently
observed triplet of states around 6.4 MeV, and find evidence that the state at
6.29 MeV, just below the proton threshold, is either broad or a doublet. Our
data also suggest that predicted but yet unobserved levels may exist near the
6.86 MeV state. Higher resolution experiments are urgently needed to further
clarify the structure of Ne around the proton threshold before a
reliable F()O rate for nova models can be determined.Comment: 5 pages, 3 figures, Phys. Rev. C (in press
Involution and Constrained Dynamics I: The Dirac Approach
We study the theory of systems with constraints from the point of view of the
formal theory of partial differential equations. For finite-dimensional systems
we show that the Dirac algorithm completes the equations of motion to an
involutive system. We discuss the implications of this identification for field
theories and argue that the involution analysis is more general and flexible
than the Dirac approach. We also derive intrinsic expressions for the number of
degrees of freedom.Comment: 28 pages, latex, no figure
On the General Analytical Solution of the Kinematic Cosserat Equations
Based on a Lie symmetry analysis, we construct a closed form solution to the
kinematic part of the (partial differential) Cosserat equations describing the
mechanical behavior of elastic rods. The solution depends on two arbitrary
analytical vector functions and is analytical everywhere except a certain
domain of the independent variables in which one of the arbitrary vector
functions satisfies a simple explicitly given algebraic relation. As our main
theoretical result, in addition to the construction of the solution, we proof
its generality. Based on this observation, a hybrid semi-analytical solver for
highly viscous two-way coupled fluid-rod problems is developed which allows for
the interactive high-fidelity simulations of flagellated microswimmers as a
result of a substantial reduction of the numerical stiffness.Comment: 14 pages, 3 figure
Is \gamma-ray emission from novae affected by interference effects in the 18F(p,\alpha)15O reaction?
The 18F(p,\alpha)15O reaction rate is crucial for constraining model
predictions of the \gamma-ray observable radioisotope 18F produced in novae.
The determination of this rate is challenging due to particular features of the
level scheme of the compound nucleus, 19Ne, which result in interference
effects potentially playing a significant role. The dominant uncertainty in
this rate arises from interference between J\pi=3/2+ states near the proton
threshold (Sp = 6.411 MeV) and a broad J\pi=3/2+ state at 665 keV above
threshold. This unknown interference term results in up to a factor of 40
uncertainty in the astrophysical S-factor at nova temperatures. Here we report
a new measurement of states in this energy region using the 19F(3He,t)19Ne
reaction. In stark contrast with previous assumptions we find at least 3
resonances between the proton threshold and Ecm=50 keV, all with different
angular distributions. None of these are consistent with J\pi= 3/2+ angular
distributions. We find that the main uncertainty now arises from the unknown
proton-width of the 48 keV resonance, not from possible interference effects.
Hydrodynamic nova model calculations performed indicate that this unknown width
affects 18F production by at least a factor of two in the model considered.Comment: 5 pages, 4 figures. Accepted for publication in Phys. Rev. Let
- …