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SECTION I
SUMMARY

Objectives

The objectives of the first contract "Study of the Liquid-Solid Tran-
sition for Materials Processing in Space" have been discussed in

Reference 1, and these objectives continue to apply to the second year's
effort (Modification 1) which is described in this report. The objectives
are:

1. To analyze the behavior of dense liquids near the
solidification point while the liquid in question is
under the influence of magnetic fields or near-zero
gravity conditions, and

2. to do this within the framework of existing liquid
state models and classical field theory.

In the present work, these objectives have been extended to include
numerical calculation of the magnitudes of external field effects on
liquids and to describe how external fields can influence the sub-
structure of the solid during the solidification process. The materials
considered in this analysis are (as much as possible) semiconducto s

and metals, since these are the materials of most interest in the Space
Processing Program.

Approach

The approach employed for this second year of the Liquid-Solid Transition
Study was to build on the krowledge of liquid state models and field-
liquid interactions gained during the first year. This was done by
defining three tasks and several subtasks:

Task 1 - Liquid Property Data Search

1-1
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Task 2 ~ Determination of Field Effects on Solute
Distribution
2A - Analysis of Field Distributions in Melts
2B - Calculation of Field Forces on Solute Atoms
and Resultant Velocities
2C - Relation of Microsegregation to Solute Atom
Velocity
Task 3 - Analysis of Field Effects on Liquids
3A - Calculation of Magnetoviscous Effects
3B - Calculation of Field Effects on Diffusion and
Related Phenomena
3C - Analysis of Body Forces Due to Oscillating

Magnetic Fields

The experimental values of basic liquid properties obtained in Task 1
were used in Task 3 « input to the theoretical equations derived in
Reference 1. Calculations performed in Task 3 then provide quantitative
estimates of the effects which magnetic and gravitational fields have

on melts of metals or semiconductors. Task 2 was essentially a new
effort to develop a model of the solidification process which would
describe to some extent the effects external fields will produce on

the substructure of the solid.

The qualitative analysis performed during the initial year of the

study suggested approaches for further investigation and calculation

in several areas. The magnetodynamic effects of interest included the
magnitude of the induced magnetic viscosity and its importance relative
to the molecular viscosity as measured by the Hartmann number. Analysis
of radio-frequency (R-F) field effects can easily be generalized to

any oscillating magnetic field since all time-varying magnetic fields
induce eddy currents in conducting media. These eddy currents then
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interact with the magnetic field to produce body forces on melts of
metals or semiconductors placed in an oscillating magnetic field. In
order to obtain a quantitative feeling for these eddy current body
forces, they are compa~~d to both the viscous force induced by the
field and to the gravitational body force, og, as described in

Section 2.2. External field effects on diffusive phenomena were
approached through the Free Volume Model descriptions of diffusion
coefficient and solidification rate. This approach describes only the
direct effects fields have on these and related quantities, and neglects
any effects of convection which are considered to some extent in Section
2.2. The Task 2 description of how external fields affect solute
segregation during solidification was approached through a four step
procedure which (1) relates the field distribution inside a melt to

the external field inducing it, (2) calculates the force on a solute
atom due to the internal field, (3) relates solute atom velocity in

the melt to the driving force found in step (2), and (4) uses Seke ta's
stability theory to show how solute atom velocity in the melt influences
solute microsegregation in the solid. Thus emphasis was .aced on
development of procedures for doing practical calculations of solidifi-
cation parameters affected by external fields (in Task 3) and on
development of a mathematical mode) which formally describes field
effects on microsegregation (in Task 2).

Results

The search for experimental values of liquid property data has identified
39 papers (Table I) and 12 books (Table II) containing data useful in

the study of external field effects on melts of semiconductors or

metals. Additional references dealing with liquid state theory and
problems are given in Section 2.5, and each of these references them-
selves contain references to works dealing with other probiems or data
pertinent to the study of real liquids and liquid state models. The
results of the data search which apply tc the investigation of field
effects on solidification are condensed in Tables III and V which

1-3
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contain the input data for calculation of magnetic and gravitational
field effects on diffusion coefficient, solidification rate and for
calculation of field forces on individual molecules in the melt.
There are two reasons why data for more than four materials does not
appear in Table IIlI. First, there has been very little experimental
work done on liquid metals and semiconductors as compared to solids,
gases and organic liquids, and so there is a dearth of experimental
data for the physical properties of these materials. Second, for

a given material, one must find some eleven material properties just
to do the calculations required for the diffusion coefficients and
solidification rates. The materials listed in Table III were the
only liquids for which values of all eleven properties could be found
simultaneously.

Calculations of magnetic viscosity and Hartmann number show that
magnetoviscous effects predominate in the metals and semiconductors
studied for fields on the order of about 10 gauss or above. This is
in agreement with the finding that gravity-driven convection velocity
decays exponentially with a time constant inversely proportional to
~1e square of the magnetic induction field applied to the melt to
induce the magnetic viscosity. Eddy current body forces induced in
melts by oscillating magnetic fields are quadratic functions of
field strength. Because the susceptibilities of most paramagnetic
and diamagnetic liquids are on the order of 10°% cgs units, the
value of the eddy current body force (fe) for any of these liquids
at a fixed field strength are equal within 0.001%. Comparison of fe
to other forces on the melt shows that eddy current forces usually
predominate, even over the magnetoviscous force, which arises from
the same field as fe' This predominance depends, however, on the
value of U, the initial convection velocity, in the magnetic vis-
cosity case, and on the ratio gf-in the comparison of fe to
gravitational body forces, where H is magnetic field strength and

o is liquid density.

1-4
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Turnbull's Free Volume Model of the liquid state and the liquid-solid
transition was used to calculate direct effects of external fields

on diffusion coefficients and solidification rates of selected
representative materials. Direct effects are those derivable directly
from the fields and not attributable to convective or magnetohydro-
dynamic effects. The results of this analysis indicate that micro-
gravity causes infinitesimal changes (10-5% - 10~%%) in diffusion
coefficient and solidification rates whi’e the changes caused by a magnetic
field of 10° oersteds are small (0.3% - 1.9%) but finite. Changes

in diffusion coefficient or solidification rate in a magnetic field
are dependent on the square of the field strength, and thus vary
widely with field strength. The diffusion coefficient was found

to increase in microgravity over its value on Earth, while whether

it increases or decreases in a magnetic field depends on several
parameters, primarily the field strength. The free energy term

(see equation 14) decreases for all materials considered in micro-
gravity, and its change in a magnetic field is dependent on the sign
of the susceptibility difference, X, " Xg and on the ratio of the
free energy in zero field to the heat of fusion. Changes in solidifi-
cation rate are, from equation (14), dependent on the relative magnitudes
of the free energy term change and diffusion coefficient change. In
the examples chosen, the solidification rate decreased in microgravity
and increased in a magnetic field of 10° oersteds.

It should be noted here that Wang computer programs have been written
for calculation of the following parameters:

Eddy current body force

Ratio of eddy current force tc gravitational body force
D'/D (magretic field case)

Free energy term (magnetic field case)

Isothermal compressibility

Coefficient of thermal expansion

Entropy

Specific heat at constant pressure

1-5



D256-10024

Free Volume Model a? parameter
Conversion of density to specific volume.

In Task 2 of the present contract, a model has been developed which
formally relates external fields to solute distribution in solids.
The existence of such a formal relationship constitutes a significant
result, but the model in its present form is severely limited in its
range of applicability and accuracy. The major limitations are as
follows:

(a) Exact, analytical solutions for magnetic field distri-
butions satisfying the boundary conditions on melts
for Czochralski crystal growth geometry cannot be
obtained,

(b) Random acceleration (gravity) fields in orbiting
spacecraft are not well known,

(c) Intermolecular forces in liquids are not well understood,
and the problem of describing the effects of more than
one field acting simultaneously on a molecule in a
liquid requires more study,

(d) Sekerka's theory of interface stability is capable of
estimating segregation cell size to only an order of
magnitude because the theory is based on the small
perturbation approximation, and

(e) Analysis of cases in which solute molecule velocity
is in any direction other than that of the solidification
velocity is extremely difficult and will require much
more research.

Results abtained under the above limitations include the determination
of the occurrence of microsegregation as a function of the parameters
V-Y where V is macroscopic solidification velocity, u is solute

molecule velocity and p = 1-k with k being the segregation coefficient

1-6
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for the material considered, and estimates of the size of cells of
different solute concentration values in the solid.

During the years this contract has been active, work performed under
the contract has rcsulted in seven scientific publications (twn
already published in international jo:rnals) and four presentations

to scientific meetings (one invited). These are listed in Appendix A.

Conclusions and Recommendations

The major conclusions of this study are:

1. Values of the nhysical properties of molten semiconductors are
difficult to obtain from the literature because very little
experimental research has been done in this area,

2. Of the research con liquid semiconductor properties which has
been reported, much of it has been done by Russian researchers,

3. Moderate and high magnetic fields produce strong forces in
melts and damp out convective flows exponentially,

4. Oscillating magnetic fields induce body forces even stronger than
the static field magnetoviscous force,

5. The direct effects of microgravity on melts of the materials
considered in this study were infinitesimal, while the effects
of magnetic fields were dependent on field strength and were
smail but finite,

6. The lack of a large direct effect of microgravity on liquids
supports the thesis that the primary benefits of materials pro-
cessing in space arise from secondary effects, such as the
suppression of convection or the reduction of contamination by
containerless processing,

1-7
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7. A formal relationship between external fields and solute distribution
in a solid during solidification has been established,

8. The occurrence of microsegregation depends on the parameters
(v - %) and w, where w is related to the interface perturbation
or cell size,

9. There are several practical limitations to the theory which describes
microseyregation dependence on external fields, including

- the difficulty of obtaining gravitational (acceleration) field
distributions in melts aboard an orbital laboratory or magnetic
field distributions in melts during Czochralski growth on Earth,

- the difficulty of representing the process of several fields
acting on a molecule at once, and

- the failure of the small perturbation approximation (which
linearizes the temperature and concentration field equations)
to yield results which agree well with experiment.

Thus it is seen that, for the materials for which experimental property
data are available, the similarity of microgravity and magnetic field
effects on melts holds only for very low magnetic fields, and the
effects are quantitatively quite different at higher magnetic field
strengths. This was to be expected, since the magnetic interaction

is much stronger than gravity, and has now been verified.

The relationship of microsegregation in solids to external fields
appiied during solidification is found to be very complicated and
not well understood at present. It is recommended that much more
research be done in this area, specifically in

- representing field distributions in melts,

- defining resulting forces on individual molecules and
deriving the corresponding velocities, and

- overcoming the limitations of the small perturbation
approximation in calculating segregation cell sizes when
microsegregation occurs.

1-8
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It is further recommended that research begin on a flight experiment
whose objective would be to compare the theory of Section 2.4 to
experimental measurements of interface stability in a convection-
free environment where the small perturbation approximation may be

valid.

1-9
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SECTION 2

ANALYTICAL RESULTS

2.1 LIQUID STATE PROPERTY DATA SEARCH

Tne work detailea in Reference 1 provides a qualitative theoretical
description of many effects which magnetic and gravi.ational fields
produce on melts during solidification processes, but there are two
reascns why it is desirable to obtain a quantitative understanding

of these effects. First, in most cases, the eguations describing the
field effects of interest do not give ar obvious indication of the
magnitude or direction of the change in liquid properties due to the
field change without actually performing the calculations defined by
the equations. Second, it is always helpful in understanding physical
phenomena described by equations to become familiar with the numerical
value of the various parameters in the equations as they correspond
to different materials or conditions. For these reasons it was decided
to perform numerical calculations of the field effects derived in
Reference 1, and to dc this, it was necessary to obtain numerical
values of all parameters appearing in the equations describing the
effects.

These experimental values were to be obtainad for materials similar
tc those most prominent in the Space Processing Program, i.e., those
which show promise of improvement in tneir economically beneficial
properties when processea in space. Semiconductors and metals, and
in particular, Group IIl - Group V compounds were the materiais
receiving the most attention in tne Space Processing discipline at
the beginning of the contract, thus the search for experimental data
centered on these types c¢f materials. The search encompassed a com-
puter search of NASA and DOL data banks, searches of the Physics
Abstracts, the Science Citation Index, the Redstone Scientific Infor-
mation Center boox collection and personal contacts with experimental
researchers at universities and other companies. [t was found that

2-1
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2.1 (Continued)

much of the property data for molten semiconductors has been measured
by Russian researchers, and that most of the Russian work deals with
electrical properties of melts other than III-V compounds. Data for
the III-V compounds corresponding to parameters and properties in the
field effect equations(]) proved extremely difficult, and in many

cases impossible, to find. Tables I and Il list references for the
journal articles and books containing liquid property dala which

were identified in the search. The tables also indicate the particular
materials and properties considered by each reference. It must be
noted that each reference shown in these tables also contains references
to other works on liquid metals or semiconductors, therefore these
lists of references are intended as a starting point for researchers
interested in a variety of materials and properties. Sufficient data
was found for indium antimonide (InSb), germanium (Ge), mercury (Hg)

and sodium (Na) to allow calculation of external field effects on
temperature, volume, Gibbs free energy, diffusion coefficient and
solidification rate as will be described in Section 2.3 (see Table III).

2.2 MAGNETODYNAMIC EFFECTS uN MELTS

Several macroscopic dynamic effects which are produced by magnetic
fields are worthy of understarding in their own right and also may be
helpful in understanding microgravity effects on melts.

Calculations of Magnetic Viscosity and Hartmann Number

Previous work has shown(]) that the magnetic viscosity induced in a melt
with electrical conductivi.y o is related to the magnetic induction B

by

Np = © B2 L2 (1)

2-2
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L1QUID STATE PHYSICAL PROPERTIES REFERFNCE LIST

2.2 (Continued)

REFERENCE DATE

1. Glazov & Vertman 1958
2. Glazov & Petrov (in Russian) 1958
3. Amirkhanov & Magomedov 1964
4, Glazov & Chizhevskaya 1963
5. Blum & Ryabtsova 1958
6. Busch & Vogt (in German) 1954
7. Glazov & Chizhevskaya 1961
8. Glazov & Chizhevskaya 1962
9. Regel et.al. 1971
10. Mogilevskii et.al, 197
11. Mogilevskii et.al, 1972
12, Mogr avskii et.al, 1972
13. Fedorov & Machuev 1971
14, Fedorov & Machuev 1971
15. Mavlonov 1972
16. Kazandzhan et.al, 1972
17. Kazandzhan et.al. 1971
18. Hodgkinson 1970
19, Krestovnikov et.al, 1967
20. Mal' agov & Magomedov 1969
21. Fedorov & Stil'bans 1967
22, Fedorov et.al, 1968

2-3

TABLE 1

MATERIALS
InSb, Gasb, A1SH
InSb, GaSb, Al5t
InSb
Ge, Si, InS
InSb, GaSb
InSb
Ge, AISb, GaSb, .1Sb
GaAs, InAs
Sb, Se3
Sb, Te3-Sb2 Se3
Sb, Te, Bi & Pb alloys

Tex Se‘_x

TS, 11,5

GaSe, InSe

InSe, GaZSe3

Te-T1 alloys

I: & Se impurities in
leTe

In-S & TY. .
riost semiconductors
CquSe2

Bi, Te, Sb, Se & Cuz
TeS

812 Se3

PROPERTIES

X

"

(4

o& n

o&R
ob«

thermodiffusion

o8«

[ 4

o&«

o & TEP
o & TEP

o & theory
Av at melting
o, » & TEP

[

o, « & TEP
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2.2 (Continued)
TABLE I (Continued)
REFERENCE DATE MATERIALS PROPERTIES
23. Fedorov & Machuev 19¢€7 Sb - Se alloys x
24, Fedorov & Machuev 1968 SbS x
25. Glazov et.al. 1967 A1Sb, GaSb, InSb, InAs, Tm, H,, S
f*of
GaAs
26. Perron 1970 Te,_x Se, oy x
27. Cutler & Mallon 1964 Tlx Te]_x o & TEP
28, Enderby & Walsh 1966 CdSb, ZnSb, BizTea. R, TEP & ¢
szTe3
29. Enderby & Simmons 1909 AuzTe. CuTe, AqTe, Bi-Te, R, o
T1-Te
30. Cutler & Mallon 1966 T1-Te solutions o, Seebeck coef,
31, Edmond 167 As,Sey - As,Te, & o, TEP, optical
As,Sey - Tl Te, absorption
32' lOffe & Regf" ]960 Nac]. Kooy TISZ. 81203. vy Py R. n
Sb253’ v2°5' Cuzs-FeS, TEP. mobility, «
Si, Ge,GaSb, InSh, MqTe,
HgSe, CdTe, Se, . ,TeSe,
BizTe- CuTe, Cuv Se, ZnSb
33. Regel, et.al 1970 Ti-Se, T1-Te, leTe. TIZSe. o, R, TEP
TIZS. Sb25e3. CquSe2
34, Regel, Smirnov. 1972 SbySe;, Ge, S1, InSb, GaSb, a, k, L/L
Shadrichev 0
nshb, BizTes. GeTe, SnTe, Te,
CuZSnTes. PbTe, CuzGeTea. faTe,
Tleey, CuTlTez
I, ason & Readall 1962 u,S x

2
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2.2 (Continued)

REFERENCE

Johnson & Readall

stler & Mallon
Cutler & Mallon
Lichter & Sommelet
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TABLE 1 (Continued)

DATE

1963

1962
1965
1969

MATERIALS

CupS g5Te 750 Cu,S
Te, Te-Se alloys

T1-Te alloys
InSb, GaSb, AlSb, InAs,
GaAs

PROPERTIES

<, 0, TEP
TEP. 9.

- oy
3

1208
'—T___p m’®

A"m' Asm’ ST
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AUTHOR

McBride, Heimel, Ehlers,
Gordon

Mantell, Ed.

Jackson, €d.

Burdi

Sharp

TABLE 11

LIQUID STATE PHYSICAL PROPERTIES REFERENCE LIST (BOOKS)

TITLE

Thermodynamic Properties to
6000°K for 210 Substances
involving the Flrst 18
Elements, NASA SP-300!
(1963)

Engineering Materials
Handr. ok
(1958,

Liquid Metals Handbook
(1955)

SNAP Technology Handbook,
NAA-SR-8617
(1964)

Thermodynamic Functlions
for Water ~e«es,

UCRL 7118

(1963)

PROPERT IES

heat capacity, enthalpy,
entropy, free energy

Tm, B.P., heat of fusion,

density,vapor pressure,
heat capacity,n, «, o,
surface tension

isothermal compressibllity,
density, n, x, o, heat
capacity, thermal diffusi-
vity, Prandt! number

Tm’ B.P., denslty, n, «, 0,

heat capacity, surface
tension, vapor pressure

P,v,T, entropy, enthalpy,
internal energy, Gibbs tree
energy

MATERIALS
Al.A!zos,B,BZOS,BO.BCO

Ll.LlCl.LIF.LIZO.LIOH.
Mg,Mng,Na,P.S. and S|

Al,Sb,B81,Cd,Cs,Ga,Au,
In,Pb,L1,Mg,Hg,K,RD,
Ag,Ha,Ti,Sn,2Zn

Hg,Na,NaK,K,Rb, L1

H,0

¢'e

(panut3u0))
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AUTHOR

Svehla

Madelung

Glazov,Glagcleva,
Chizhevskaya

Hultgren, Orr, Anderson
and Kel ley

TABLE 11 (Continued)

TITLE

Estimated Viscositles anc
Thermal Conductivities of

Gases at High Temperatures,

NASA TR=-R=132
(1962)

Physics of 111~V Compounds

Liquid Semiconductors
(1969)

Selected Vaiues of Thermo-
dynamic Properties of
Megtals and Alloys

(1963)

PROPERT |ES

Lennarc-Jones constants,
n, heat capaclty

atomic radil, Tm

electrical conductivity,o

thermoelectric power, T.E.P.
density, p

kinematic viscosity, v
magnetic susceptibility, x
melting temperature, TM
heat of fusion, Qf
mobl | ity, v

heat capacity, ¢
enthalpy, HT-Hs*p
entropy, ST'sz

free energy, FT'Hst

atomic weight, A
vapor pressure, P

e

MATERIALS

A1LAICI,AI0,AIS,BF
BO,H,0,Hg, HgBr ,, HgC1 ,,
Hgl,,L1,LIBr,LI0,LI,,
L1,0,Mg,MgCt  MgF ,Ne,

NaBr ,NaC! ,NaF ,Na | N8O,
NaOH,Oz,P,SI,SlCQ,S|F.

SlO,SIS.SIz,XQ,Zn

(panutiuo))

BOCDNOA' 'S, ,P,G’,
Ge,As,1n,Sn,Sb,TI,PDb,
8l

$1,6e,Te,AlSb,GasSh, InSH,
GaAs.lnAs.ZnTe,CdTe,GazTes.

lnzTos,MQZSl,MQZGO.MhZSn,
Mgsz,GoTe,SnTe,PbTo.PbSo.

PbS.Bl2803.BlzTos.szTo3

66 metals and semi-metals
167 alioys

$2001-95¢0
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AUTHOR

Gray, Ed.

Davydov

Beer, Ed.

TABLE 11 (Continued)

TITLE

AP Handbook
11963)

Germanium
(1966)

Liquid Metals -
Chemistry and Physics

PROPERT ES

isothermal compressibllity,

g
surface tension, ¢
thermal expansion coetticient,

a
thermal conductivity, «

heat capacity, Cp

melting temperature, entropy,
enthalpy: Tm’sm'Hm

Lennard-Jones parameters,
e&bo

molecular volume, Yo

thermal coefficient of
resistivity, Isothermal com-
pressibliity, thermal expan=-
sion coefficlent, n, heat
capacity, surface tension,

Hali coefticient, resistivity,
magnetic susceptibility

N

N

MATERIALS —_

&

2

HZO.Hg,A(,Sb.Bl,Cd.Cu,Gc. =
Au,Pb,Hg.P?,K,Ag,Nl.Sn.Zn §

HZO,Hg,LI,Na,Pb.Sb,Sn,To.Zn

Atl metals and semi-metals,
many alloys

¥2001-9520
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2.2 (Continued)

where L is a characteristic length for the liquid system. To cbtain
values of oy in poise, the usual viscosity unit, the following con-
versions are useo:

-1 dyne sec
1 gauss = 10 coul om and

1 dxnimsec

1 poise

The meaning of the magnetic viscosity is indicated by « dimensionless
parameter, the Hartmann number, which is defined as

h = nm/n (2)

where n is the molecular viscosity of the melt. Thus if h > 1, then
the magnetic viscosity predominates, while for h < 1, magnetoviscosity
is not as important. Figures 1, 2 and 3 are graphs of Hartmann number
versus magnetic induction for various materials, values of L and,

in the case of sodium, different values of temperature. These graphs
show that, while 1iquid sodium is, as expected, most affected by a
magnetic field, the III - V compounds ! :Sb, InAs and SaAs do show a
definite field-induced viscosity with h > 1 for fields > 40 gauss and
L >1cm. A field of 40 gauss is quite modest. Thus magnetic vis-
cosity dominatus for most of the conditions shown in the figures.

Convection Decay in a Magnetic Field

The Havier-Stokes equation describing bulk liguia motion in a magnetic
field may be written

8- e IxE (3)

where ¥ = - [cy + P - 3 7-U] + n v2u contains all non-electromagnetic
forces. From the expression for the current density, J,ina moving
medium and from appropriate vector identities, it can be shown that

2-9
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2.2 (Continued)

the component of magnetic force transverse to the magnetic field lines
is

>

(ng)t = - g B? ut . (4)

If ore considers only transverse components of equation (3) and defines
a time constant, t, by

< ©

equation (3) may be rewritten as

d—at 1 > -{t

@ v h o (6)
If it is assumed that the forces contained in ft change only slowly
with time, (6) may be integrated to yield

> . I > Tz -t/-[

uy S v (G- cT)e (7)

where Eo is an integration constant equal to the free convection velocity
at time = tp,the magnitude of which is on the order of 30 to 40 cm/sec.
Figure 4 presents the qualitative decay curve for a situation corresponding
to equation (7). Thus when a magnetic field is imposed on a melt in which
convection currents are flowing, the flow velocity will be damped by the
field according to equation (7), falling off after times much greater than
¢ to a value

o~

0y o= L
g (£>> ) 5 “t

From equation (3), if there were no magnetic field,

u
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2.2 (Continued)

FIGURE 4: CONVECTION DECAY IN A MAGNETIC FIELD

For liquids of density o = 6 g%;, conductivity of o = 103 2-! em~! and
a magnetic induction o* 103 gauss, : is on the order of 6 seconds.
Assuming that Eo 235 EEE’ the velocity after three minutes will fall
to about one cm/sec.

Body Forces Due to Oscillating Magnetic Fields

The qualitative aspects of oscillating magnetic fields have been dis-
cussed in References 1 and 2. Since the body force in gﬁﬁgé-on an element
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of liquid is given by the cross product of the eddy current, Je’
and the magnetic induction, B, the magnitude of this “eddy current
force" is

fo = 13 |B] sin o

where o is the angle between the J and B vectors. fe then assumes its
maximum value when 8 = %3 which is often the case experimentally. by

(8)

relating the eddy current to the field inducing it, one can show(3 that

f = iJI |B| = gHB = gﬁﬁz = Eﬁg'(]+X)H2
emax a a a

where a is a characteristic length in the 1iquid, such as the radius
of a cylindrical melt container. If one assumes that a is 5 cm, then

2u
o _ dyne
L - o.osozsan—-gw

Thus, the eddy current body force of equation (9) may be plotted as a
function of field for different materials (different susceptibilities,
x) as in Figure 5. In practice, since values of x for liquid me*als
and semiconductors are on tne urder of 10-® cgs units, curves for the
materials InSb, Ge, Na and Hg all fall on the sare points to within
0.001%.

To gain a more guantitative feeling for the magnitude of the eddy
current body force, it is helpful to compare it to the magnetoviscous
force arising from the magnetic viscosity discussed earlier and to
the gravitational body force, pg. From equation (4), the magneto-
viscous force may be written

fm = 0 uoz (14x)% HZ u

2-15

(9)

(10)
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2.2 (Continued)

Thus by dividing equation (9) by (10) one obtain-

Emax - 2 (1)
fm g uoai]+;75

where it must be remembered that fe . 2nd fp are vectorially in
different directions, and in fact are often orthogonal. Assuming
again that a = 5em, o = 103 o~lem™! and noting that 1+x = 1 and

v = 4n X 10-? g sec/cm, one may plot the ratio femax /fy for a range
of convection velocity values as in Figure 6. This graph shows that
the predominance of the eddy current force increases for a diminishing
or damped convective flow. Thus in using oscillating magnetic fields
to control convection, or even to achieve stirring of the melt, one
must be careful not to “overdamp" or set up eddy current-driven flows
which are more vigorous than the gravity-driven convection at the
beginning of the process.

To determine just how the eddy current torce compares to the force
driving natural convection, equation (9) is divided by the gravi-
tational body for.e

2“0 (1+X) H2

f/f = — (12)
Cmax 9 ag ¢
- -» dyne cm .
For a = 5¢cm, 14y = 1, My = 4n X 10°2 S%By-and g = 980 Sec? this
equation becomes
dyne sec?, K2
= -5 —
femax/fg (5.13 X 10 3%57—557—) - (13)

which is plotted in Figure 7. It is obvious that femax dominates the
liquid flow for field strengths above 500 ST . Liquid sodium is the
most responsive, of the materials considered, to the eddy current force,
while the semiconductors InSb and Ge fall between sodium and mercury

in their response to the field. Thus it is seen that oscillating magnetic

%  REPRODUCIBILITY OF THE ORIGINAL PAGE !5 POOR, 1

i
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2.2 (Continued)

fields of even modest strengths (500 - 10,000 %ﬁﬂ) produce forces
which are quite powerful compared to other forces in melts.

2.3 EXTERNAL FIELD EFFECTS DERIVED FROM THE FREE VOLUME MODEL

The effects which magnetic and gravitational fields have on the
temperature, volume, Gibbs free energy, diffusion coefficient and
solidification rate of solidifying melts have been described qualita-
tively in Reference 1. That analysis may be carried further by con-
sidering the ratio of the solidification rate under changed field
conditions, Ué, to the solidification rate under normal field conditions,
Uc' "Normal" field conditions implies zero magnetic field and 980 5232
gravity, while "changed” field conditions means either an applied

magnetic field or microgravity conditions existing in an orbital
laboratory or other zero gravity simulator. Using Turnbull's expression(4)
for the solidification rate (see equation 28 in Réference 1), and assuming
that the fraction of lattice sites in a liquid-snlid interface to which
molecules can be attached remains constant, the field effect on
solidification rate may be expressed as

' ALY LT
!J_C_ D 1-e” /X (18)
Uc D 1 - eAG/kT
The Free Volume Model expression for the diffusion coefficient, D, may be
written > _ _yv*
D=%u v eV (15)

where y is a parameter relating the distance traveled by a molecule
between collisions to the average specific volume, v, of the liquid,
and y is an overlap factor lying between % and 1. v* is the critical
value of free volume for the onset of diffusion, u is the gas kinetic
velocity given by

u o= '\/3mﬂ (16)

2-20
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and Ve is the free volume defined as

Vg T VeV, {i7)

where Yo is the molecular volume calculatec from the diameter and
m is the molecular mass.

Now if equations (16) and (17) are substituted into (15), one obtains
R L} M e
D = ¢TZ¢ 0 (18)
where ¢ = v* (i——)& is a constant for a given material and values of
3———have been tabu]ated by Cohen and Turnbull( ) for some simple liquids.

Since T and v are the only variables in equation (18), the temperature
and specific volume under altered field conditions may be expressed
as

T' =T+ 4T and v' = v + av

where 4T and Av are the temperature and specific volume changes produced
by field changes. Writing the expression for D' in terms of T' and v'
then dividing by eguation (i8) yielas the relation for the field effect

on diffusion coefficient
1
2
é%) e f(v,av)

Cﬂtg

= (] + (]9)

where

Fvov) = (B2 &Y [(1 - 002 + & (1 - oy

Thus to determine the effects of magnetic fields or microgravity on

U and D, the terms %T . %1 and the altered free energy, AG', need

to be calculated.

Igmperature, Volume and Free Energy Changes in Microgravity

iop of isothemialideampressibi Vity B e dbmactionaa
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2.3 (Continued)
change in the volume of a liquid due to a change in pressure, AP is

v - 6P (20)

where 8 is the isothermai compressibility of the liquid. If a container
of liquid is envisioned as being moved from the Earth's surface into an
orbiting laboratory where microgravity conditions prevail, thare will

be a change in the hydrosta*tic pressure within the liquid of

AP = - p2Ag (21)

where p is the liquid density, z is depth below the liquid free surface
on Earty and Ag is the change in gravity or acceleration fieid. Thus

fronw on (20)

S = gozag (22)
From the definition of the thermal expansion coefficient, «, one can
write(7)

o g @5

so the temperature change corresponding to the pressure-induced volume
change may be calculated from (22).

Siace the Gibbs free energy of solidification is given(8) by
AG = Sch (24)

where Sc is the entropy of solidification and 8T is the amount of gndpn-f
+xgoling (a negative number), externa] 3 L

£
R AG' = AG + avaP
?;
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with AP given by equation (21) for a microgravity case. With these
equations, the free energy term

the diffusion coefficient change D'/D, and the solidification rate
change U(':/UC may be calculated for any material if the characteristic
parameters are available for the liquid state of the subject material.
Table III lists values of the parameters required for calculations in
both the microgravity case and in the magnetic field case for four
representative materials.

Temperature, Volume and Free Energy Changes in a Magnetic Field

Equation (20) may be used to determine fractional volume changes in a

liquid placed in a magnetic field if AP is now the magnetic pressure(g)

—t

AP = - 5 u  [H2 - xH?] (27)

where Yo is the permeability of free space (.1257 dyne/amp?), x is the
magnetic susceptibility, H0 is the initial field strength before the
liquid was placed in the field and H is the resulting steady-state of
the field internal to the liquid. Thus

< |>
<
—

= 3 8ug [H2 - xi2] - (28)

To estimate av/v without having to specify boundary conditions of a
particular system, one may assume that for paramagnetic or diamagnetic
liquids, H = H_. Since x is on the order of 10”7 for such liquids,

[=]

1
- 2 =z - 2

< |
<
| =~

~

An alternative method for calculating the volume change would be to u:ze

(10).

the theory of magnetostriction Unfortunately several parameters

required in the equations of this theory are not available for liquids.

2-23
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TABLE 111

PARAMETERS USED FOR CALCULATING FIELD EFFECTS®

v*

Xg Xg Q R o Sc 1;— Yo v T o,

MATERIAL 3 3 erg/ an?/ g erg/ ams/ | emds on/

cm cm cm dyne °K mole®K mole | mole °K | cm
InSb -6.816x10°7 | -7.612x1077| 2.69x10% | 3.15¢10°17 | .000341 | 6.211x108 | 0.1 [10.8 | 18.2 | 793 | 6.43
Reference 13 13 11&14 20 20 14 E E 39 39
Ge sa.002x10°7 | -6.125x10°7| 2.15x10% | 1.19x10°"Y | 0001574 | 2.443%108 | 0.3 | 6.8 | 13.0 | 1200] 5.57
Reference 13 13 11&14 20 20 15 E E 39 39
Hg -2.466x10°8 | -2.128x1076" 1.52x10° | 3.9x10712 | .00018 |9.ex10” |.0935| 8.5 | 14.6 | 224 | 13.7
Reference 18 18 1n&14 16 16 14 6 £ 17 17
Na 5.850X10"/ a.806x10°7 | 1.02x10% | 1.916x10717| .00028 | 7.01x107 !.236 |17.3 | 24.6 | 361 | 0.93
Reference 19 18 11&14 17 18 14 6 E 17 17

* H is assumed to be 10° gersteds (7.96)(104 amp/cm)

8T is assumed to be -10°K (T = Tm + 8T)

Z is assumed to be 1 cm

E indicates estimated values

£°¢

(panuijuo))
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In his paper describing magnetic field effects cn the dissolution and
solidification rates of paramagnetic crystals in solution, Schieber(ll)
derived the following expression for the change in temperature of a
solidifying system due to the application of a magnetic field, H

- (30)

whare Xg is the magnetic susceptibility per unit volume of the liquid,
Xg is the susceptibility of the solid and Q is the latent heat of
solidification. Thus the temperature at the interface of a solidifying
material in a magnetic field can increase or decrease depending on
whether the material is diamagnetic or paramagnetic and on the relative
magnitudes of Xg and Xg -

The Gibbs free energy of a material in a magnetic field is given by
wood(lz) as

' =6-vi - N (31)
where M is the magnetization, xH. Thus the change in G at the interface
with a magnetic field applied will be

t = - - 2

AG a6 v()(9v xS)H . (32)

It is easy to show that if SCGT > 4v(}, the free energy term

is less than unity if X, " Xg is positive and becomes greater than one

if Xy = Xg is negative.

Calculation of Field Effects on Melts

From equations (22),(23),(26),(29),(30) and (32) and the parameter values
given in Table III, the various terms in equations (14) and (19) can be cal-

culated and used to determine values for D'/D and U&/Uc for both the microgravity

2-25
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and magnetic field cases of altered external field conditions. Note
that the references for the input data are indicated under the approp-
riate values in Table III. Values of the variable parameters which
were assumed for the examples presented here are given below the table,
and estimated values of Vo and x%:-were determined from atomic and
jonic radii shown on the Sargent-Welch Table of Periodic Properties of
the Elements (1968). In such estimations a 50% composition for InSb

is assumed.

The values for Ué/Uc, D'/D and the free energy term which were computed
from equations (14) and (19) are given in Table IV. Several comments should
be made concerning the Free Volume Model and the results presented in

Table IV. First, Turnbull's model is based on such simplifying assumptions
that it could be expected to be most accurate for the simplest liquids.

But when the model is compared with experimental cata (see Table I,
Reference 20), it is found to be more accurate for water and methanol

than for such simple liquids as Argon ana Helium. In addition, Turnbull's
purpose in developing the model was to describe transport and solidifi-
cation in glass-forming liquids, but he also gets good agreement with

(6). So there

is little or no correspondence of the model to particular classes of

experiment for organic liquids as well as liquid metals

liquids. On the other hand, because of the simplifying assumptions,
the model is not overly accurate for any specific liquid 20 . But it
can provide order-of-magnitude estimates for quantities of interest,
and at least indicate the direction of change in these quantities
under the influence of perturbing fields. This is the primary “enefit
of the model to Space Processing - that it does allow the deterrination
of direct effects of magnetic and gravitational fields on diffusion
coefficients and solidification rates. By "direct effect" is meant
those effects derivable directly from the fields themselves, and not
related to convective or magnetohydrodynamic effects. Such effects,
shown in Table IV, can be expressed as percent changes if one notes
that for numbers as close to unity as these, the percent change in

2-26
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TABLE IV

EXTERNAL FIELD EFFECTS ON REPRESENTATIVE MATERIALS

MICROGRAVITY CASE

MAGNETIC FIELD CASE

MATERIAL
FREE ENERGY TERM| D'/D uL/u, FREE ENERGY TERM| D'/D ue/u,
InSb 0.9999993 1.0000005 0.9999998 0.99993 1.00742 1.007
Ge 0.99999966  [1.0000003 0.99999996 0,99987 1.00624 | 1.006
Hg 0.9999987 1.0000007 0.9999994 1.00539 0.99805 1.003
Na 0.99999983  |1.0000001 0.99999993 1,019

0.99771 1,02139 i

€°¢

(panut3juo))
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a quantity X is approximately 100 (X'/X-1) where X' is the perturbed
value. Expressed this way, the changes in both diffusion coefficients
and solidification rate are in the ranges 10-5 to 10-6% for the
microgravity case and 0.3 to 1.9% for the magnetic field case.

It must be noted that the changes in D and Uc in the magnetic field
case are strongly dependent on field strength. That is, for high
enough fields, the value of D'/D for mercury could be greater than
one, while for sufficiantly low fields, the values of D'/D for InSb,
Ge and Na could be less than one. But the data do show that gravity
has a much smaller direct effect on D and Uc than do magnetic fields.
Thus this analysis supports the thesis that suppression of gravity-
driven convection, which has an indirect effect on solidification
parameters, is the primary benefit of materials processing in space.
The data in Table IV also show that the free energy term is less
sensitive to magnetic field changes than is the diffusion coefficient.
This is due to the more direct dependence of the diffusion coefficient
on field-induced volume change and to the fact that volume changes

are much larger (by factors proportional to H?) in magnetic fields
than in microgravity where %1
in Uc upon the application of a magnetic fie}?];ndicated in Table 1V

is on the order of 10~8. The increase

has been observed experimentally by Schieber

2.4 THE RELATION OF EXTERNAL FIELDS TO SOLUTE DISTRIBUTION IN
SOLIDS

Previous sections of this report have dealt with calculations performed
with theories developed during the period described by Reference 1.

The present contract was primarily concerned with such calculations,
but also provided for further theoretical development in the area of
external field effects on solute distribution in solids. The question
addressed by this portion of the work could be stated: "Is it possible
to develop a theoretical model which will describe the effects an
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external field has on the substructure of a material which solidifies
in the field?" The best answer to this question at present is that

a model consisting of four steps has been developed which formally
relates the occurrence of microsegregation in a solid to the external
field conditions which might obtain during solidification of a binary
material. The steps are:

1. Calculate the field distribution inside the melt due to the
known external field as a function of susceptibility (magnetic
field case) or density (gravitational field case).

2. Find the force the internal field exerts on solute atoms.
3. Determine the resulting solute atom velocity producea by the force.

4. Use Sekerka's interface stability theory to relate the criteria
for microsegregation to solute atom velocity.

Although the model yieids a formal relation between externai fields

and microsegregation, it is not really useful for performing practical
calculations since each step contains operations which cannot be
performed rigorously for most real solidification situations. However,
it is instructive to consider- the theoretical aspects of each of the
above steps.

Field Distributions in Melts

The calculation of magnetic field distributions A(¥,t), in materials

from a known field outside the material has long been understood(Z]).

Basically, one solves Laplace's equation

V29 =0 (33)

for the magnetic potential, ¢, where
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in all regions of space subject to the boundary conditions of the problem.
As in all field problems, the geometry of the situation determines the
form of the boundary conditions and the solutions. Figure 8 shows

the two geometries considered. These geometries were chosen because

of their widesprrac experimental usage.

(R)

]
-;{ b
CRY%TAL

]
°2
[
1
4———'———-—* ¢
3 ! o
1
LIQUID 3
[ a =1
i

(8)

FIGURE 8: CRYSTAL-MELT GEOMETRIES CONSIDERED IN THE STUDY OF MAGNETIC
FIELD DISTRIBUTIONS IN MELTS. (A) CORRESPONDS TO ZONE
REFINING AND (B) TO CZOCHRALSKI CRYSTAL GROWTH.

2-30



D256-10024

2.4 (Continued)

The zone refining geometry can be considered an infinite cylinder,
since the solutions of interest are those in a small region near the
liquid-solid interface. The boundary conditions in this simple case
are

¢y (0,0) = finite (35a)
3%y 3¢9
ur sl = ug = (35b)
1 or a 0 ar a
¢1 (a$e) = 4’0 (6,9) (35C)
¢g (r,e) —s - Hyr cos o (35d)
Yy » «

where %0 is the potential outside the cylindrical container, 0 is the
potential inside and H0 is the initial field before the melt was intro-
duced into the field. The solutions obtained in the usual manner(Z])
are in cylindrical coordinates

ﬁa = Hy [cos o r-sin ¢ 6] + (36a)

2 - -
(2§§) %7 Hy [cos e r+sin o 6]

-v_z o, -
H] = 3 “0 (cos @ r-sir o 9) (37a)

and in rectangular coordinates

3 2 3 3
Ay =t 1+ (5 Hy & [(x2-y2) i + 2xy J1, (36b)
r2=x2+y2
LRE (5127) Hy 1 (37b)

where i, j, r and ¢ are unit vectors, with ﬁo = H0€ initially.

Tae Czochralski geometry presents a much more difficult problem. First,
because this case is essentially two cylinders of different radii
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meeting end-to-end at the 2z=0 plane, there are more boundaries_  and

thus boundary conditions (see Appendix B) and solutions to be considered.
Also, because the problem is not symmetrical on either side of the

z=0 plane, the general solution to equation (33) is a Fourier-Bessel series

07 Dgd(kr) + B (k)] X

[ckekz + oke'kz][emcos mo + F_sin me] (38)

and this series unfortunately does nut converge in the region near the
z=C plane. 7thus no rigorous analytical solution to this probiem is
possihle, and one must choose either an approximate analytical solution
or a numerical computer solution. An approach to obtaining an approximate
solution is to convert the Czochralski geometry into the geome.ry of

two infinite, concentric cylinders as shown in Figure 9. The solutions

to the infinite concentric cylinder problem are eésily obtained, then

the solutions may be written above 2=0 by setting My = Mg and below

z=0 by setting Mo = Hp

!
I
|
i X2
!
|
|

CRYSTAL

Ha

L

MELT

Za P

FIGURF 9: CONCENTRIC CYLINDER APPROXIMATION TO 3ZCCHRALSKI GEOMETR™.
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Thus, in cylindrical coordinates
ﬁa = H (cos & r-sin o 8) +
-2}; %Ho (cos 6 resin 6 0)

wher: y = Xy and d = a, 2 < 0; x = X2 andd=b,2z2>0

A

1° E%;T Hy (cos o r-sin o 5)

p==4
t

1*x2 -
2 = Z(E;;E) Hy (cos 8 r-sin 6 @)
In rectangular coordinates, the solutions are

. 2 d? 2 2
HO = H0 i+ §§; Hy = [(x2-y2)i + 2xyj]

where x = x; and d = a for z < 0; x = x, and d = b for z > 0, r2 =

x< + y2 and ﬁb indicates the new field outside the melt,

_ 2 °
ﬁ] " 7 Hy i
T+y "
_ 2
ﬁz = 2(51;;) H0 j

The trouble with these solutions is, naturally, that they do not
satisfy the real boundary conditions (see Appendix B) in the liquid-
solid interface regior, which is the region of primary irterest. An

approach to obtaining i solution which does satisfy the boundary con-

ditions for the field distribution in a Czochralski growth system
utilizing computer capabilities is the finite element method. This
method consists basically of four steps:

(39a)

(40a)

(41a)

(39b)

(40b)

(41b)

1. Break up the region of interest (interface region) into small elements

as shown in Figure 10.
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X2
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:
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(A)

FIGURE 10: FINITE ELEMENT METHOD FOR SOLVING FIELD DISTRIBUTION
PROBLEMS IN CZOCHRALSKI GEOMETRY

(A) ELEMENT GRID IN INTERFACE REGION - SIDE VIEW
(B) ELEMENT GRID IN INTERFACE REGION - VERTICAL VIEW
(C) NODES OF ADJACENT ELEMENTS

2. Solve Laplace's equation for ¢ at each node for each element.

3. Impose “compatibility" conditions on the nodes of element i so that
solutions at each node of i satisfy the boundary conditions of each
element adjoining i at that node, and t! erefore satisfy the boundary
conditions of the problem.

4. Program the computer to sum the solutions for each element (which
satisfy boundary or compatibility conditions) over all elements to
obtain the total solution of the problem.

Techniques for c¢ctually cariying out the above steps are not vet per-
fected since the application of finite element methods to field theory
problems is relatively new. Thus the time and resources required to
obtain a solution for the field distribution in a Czochralski crystal

2-34



D256-10024

2.4 (Continued)

growth system are far beyond the scope of the present study. However,
it is possible to determine qualitatively the shape of the field in

the interface region. Physically, it is known that magnetic induction
(B) field lines are "pushed out" of materials possessing lower per-
meabilities than their surroundings. It can also be seen from equations
(40) and (41) that B] > BZ' Therefore the lines of B in the interface
will be shaped qualitatively as in Figure 11 when Xy > Xp- Thus the
qualitative field shape of Figure 11 coupled with the numerical answers
from equations (39) - (41) constitute an approximate solution for the
field distribution in the Czochralski growth case.

FIGURE 11: B FIELD LINES IN THE INTERFACE REGION, CZOCHRALSKI
GEOMETRY, X] > X2

Gravitational field distributicns are even more difficult to calculate
rigorously because they depend on the integrated matter distribution
throughout the liquid-soliu system as well as any external gravity
fiela such as that of the Earth or the random acceleration field on a
spacecraft. But oraer-of-magnitude estimates of gravitational forces
on solute atoms may be found from F = mgr where m is solute atom mass
and 91 is the total gravity field acting on it. On Earth 97 is the
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sum of the Earth's mass field, its rotational acceleration field (these
two sum to 1g) and the gravity field of the materia. in which the atom
is situated.

For a melt in a cylindrical container, the gravity field due to the
melt mass acting on a molecule near the surface of the melt may be
estimated from Gauss's ]aw(zz)

[[8.43 = -8a6[[[oadv (42)

winere G is the universal gravitation constant and p is the density of
the melt. Assuming o and Ec to be constant, equation (42) becomes

§c-(z;b +r, K) = -2nGor 2
or
§, = -nbo (r v+ &) (43)

where re is the radius of the cylinder, z is its length and ;c and K
are the corresponding unit vectors. Now nGp = 1.26 X 10°6 sec~2, so
for values of re and z on the order of 10 cm, t@e magni tude of §c is
roughly 1075 cm/sec2 or 108 g. Therefore, if e represents a unit
vector lying along a radius vector of the earth, the total gravity field
in a cylindrically shaped melt is

ET = -g ;e - 1078g (rC +K) : -g Fo (44)
In a space processing laboratory, the gravity level can be represented
by

61' = -EC +1 (a) (45)

where f(a) represents random spacecraft accelerations and vibrations
which are on the order of 1073g to 1076g.
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Resultant Internal Forces on Solute Atoms and Atom Velocity

Once the magnetic field distribution in a melt is known the force on

a given atom due to the field 15(2])

nag - B) (46)

where ﬁ% is the magnetic moment of the ith atom. Since ﬁ% is constant
for a giver species of atom, equation (46) can be written

F = (ﬁ: -7 B (47)

mag

or, in terms of scalar differences
I}
Fmag T (48)

The magnetic moment, m', may be calculatad from th2 susceptibility of
the material. Diamagnetic materials do not hcve magnetic moments as
such, but do exhibit behavior in a magnetic field which corresponds tu

" Lo w(23)
an "effective moment

' _ v ,
Mdia = . ﬂ; H (49)

where V is the volume per mole of diamagnetic liquid and No is Avogadro's

number. Ffor paramagnetic materials the moment is(24)
1
Ir - -
3V, 0 —-y-7
b r s ™ . b
Moara LkT(NO e r )i (50)

where the second terii on the right derives from the diamagnetic contri-
bution to the paramagnetic susceptibility. If any solute atom possesses
a net electronic charge, it will alsc experience Lorentz forces as it
muves in the magnetic field of the melt. This situation is considered
in Appendix C.

travitational forces, as have been indicatea, are calculated from

Fg = mgp (51)
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where m is the mass of a solute atom. Interatomic forces are found
from the negative gradient of the intermolecular potential, ¢, for

the solute-solvent system in question. A value for the force may be
calculated if one assumes that 2-body forces predominate and assumes

a particular form for the potential. For the Lennard-Jones potential(zs)

Fol = 24 S1(D2 - (D] (52)

where ¢ and ¢ are the Lennard-Jones energy and distance parameters

and r is the intermolecular separation. (The terms atom and molecule
are used interchangeably since the simple models described here do not
differentiate petween molecules of different atomic structure.) Table V
presents values of the forces calculated from equations 48 - 52 for
several liquids.

One must be careful, when comparing these forces, to remember that they
are not static. That is, if a liquid is envisioned as a collection of
molecules situated in cells formed by their nearest neighbors, each
molecule is known to osciliate about the center of its cell with a
restoring force such as equation (52). But since diffusion is known
to occur, at some instant the force and cell structure must be altered
encugh to allow the molecule to escape its original cell and enter
another. This alternation of the cell structure and restoring force,
or cell potential, will occur randomly because, as must be recalled,
each molecule making up the cell under discussion is also oscili--ing
in its cell. Of course, even this picture is an oversimplificati.n
because the description of liguid farces is one of the most difficuit
of the ii-body protless. So although the data of Table V indicate thet
tiquid 1ntermolecuiar forces are mucn stronger than magnetic or
gravitatiornal forces, the statistical (and, in fact, unknown) nature
of the true intermolecular force permits an external torce to act as a

bias cn the otherwise random motion of a solute molecule.
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TABLE V
MICROSCOPIC FORCE COMPARISONS IN LIQUIDS*
Hg InSb Na NH3 CO2
- ergs 1.0353 X 10713 - 1.898 x 10713 | 7.707 x 10714 | 2.694 x 1071%
s - o 2.827 x 1078 - 3.567 x 1078 | 2.9 x 1078 3.941 x 1078
o lr < o 3.59 x 1078 - 4.27 x10°8 | 4.3x10°® 5.02 x 1078
o
Lé m - gm 3.33x 10722 | 1.97 x 10722 | 3.82 x 1023 | 2.82 x 10723 | 7.3 x 10723
E 1y - o -2.466 X 10°° | -6.816 x 107 | 5,859 x 107 .- -
5|1 ~ gm/mole 200.6 116.75 23 -- --
% W
= v + ed/mole | 14.6 18.2 20 6 25 40
o~ gn/om 13.7 6.43 0.93 -- --
Foo 8.6 X 107° - 1M.6x10% |3.3x10° 1.6 x 1078
wun | F 1.8 x 1072 6.2 X 10722 | 2.34 x 10718 -- --
gg | ™ 19 19 2 20 20
S5 | ¥, 3.3 %X 10 50 010719 1374 x 10720 | 2.76 x 107 7.15 X 107
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The next step in connecting external fields to solute distribution in

the solid is to determine the solute molecule velocity, u, from the forces
acting on the molecule. The practical method of relating velocity to
force is through the mobility of the solute molecules

u(r,t) = v F(r,t) (53)

where the term F includes all forces acting on the molecule except the
random molecular diffusion forces, discussed above, which are included
in the mobility, v. v depends on diffusion coefficient and temperature
which are in turn related to the microscopic fluctuations, both random

and oscillatory, of the molecules, (26-27)

and therefore to the random inter-
molecular forces. Thus, for the cases considered here, F would be a
magnetic or gravitational force (as calculated from equations 46 - 51)
while intermolecular forces, such as equation (52), would not appear

explicitly in the expression for u.

The Dependence of Microsegregation on Solute Velocity

Once the velocity of a solute molecule is known in the melt, how does
this factor relate to solute distribution in the solid? The following
theory, which discusses microsegregation in terms of the stability of
the liquid-solid interface, provides a qualitative answer.

Segregation may be divided into two parts: microsegregation and macro-
segregetion. Microsegregation includes short-range differences in
concentration, such as those found between cells, dendrites and grains,
while macrosegregation refers to long range variations in composition
found along the length of an ingot and between the outside and the center
of a casting. The difference in composition between the solid and

liquid phases during solidification is responsible for the non-uniform
distribution of solute in the final solid allcy.
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The intercellular and interdendritic microsegregation, i.e., the
segregation of solute to the cell boundary or inbetween dendritic
branches, is the result of lateral diffusion of solute away from the
tip of the growing projection. It follows that microsegregation occurs
only when the planar solid-liquid interface becomes unstable. There-
fore, to study the microsegregation and the substructure of the solute
distribution, the morbhological stability of the interface separating
solid and liquid curing solidification needs to be investigated.

Interface instability in crystal growth was first discussed in connection
(28) in 1953 on the
unidirectional crystallization of dilute tin alloys in horizontal brats.

with experiments reported by Rutter and Chalmers

They proposed that impurities rejected by the freezing solid can build
up ahead of the advancing solid-liguid interface in such a manner that
the equilibrium freezing temperature of the Tiquid adjacent to the
solid-Tiquid interface is abev2 its actual temperature. They postulated
that if the "constitutionai supercooling" exists, a protuberance on the
interface would have a tendency to grow spontaneously, a smooth liquid-
solid interface would be unstable and the observed growth forms would
resuit. The conditions under which constitutional supercooling occurs
wo- g subsequently placed on a quantitative basis by Tiller, Rutter,

(29). The constitutional cooling principle deals

Jivkser. and Chalmers
wiir ne geestion of which state, solid or liquid, is thermodynamically
f-vn «b:e in tne region of the liquid ahead of the interface and is not

{usts upon the dynamics of the whole system.

A mcre elegant approach to the stability theory is to consider a small
fluctuation on a planar interface and to determine under what conditions
the fluctuation decays and under what conditions it grows. This is the
ney ;urbation theory of interface stability and has been developed by

Nagner(3o), Mullins and Sekerka(3]’32), Sekerka(33'36) and Voronkcv\37).
The perturbation stability theory provides a description of the time

evolution of a perturbed interface and the accompanying temperature
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and concentration fields. This description is valid so long as the
perturbations and their effects remain sufficiently small to be described
by a linear theory. A time and distance scale of perturbed interface
phenomena can therefore be ascertained(38).

There are two different but related calculational methods of studying
the response of the interface to a perturbation. These are the time-
independent and time-dependent stability theories. The time-independent

theory(3]'33)

involves the time implicitly but excludes time as an
explicit variable in the description of the temperature and concentration
fields. This "steady state" approximation gives valid results for
sufficiently slowly growing perturbations. A more complex time-

dependent theory has been developed by Sekerka(34)

employing time-
dependent transport equations. The stability criterion of the time-
dependent theory is very complicated and has not been reduced to a
practical criterion. To an approximation, the necessary and sufficient
condition for interface stability from the time-dependent theory has
been found in agreement with that of the time-independent theory.

Since the purpose of this study is to determine the effects of external
forces on microsegregation of solute atoms during solidification, we
have ext.nded the time-independent theory of interface stability(32’33)
to include the movement of solute atoms resulting from the external
forces which act on them. The stability criteria under different
growth conditions are determined, and a method of estimating the size

of the substructure is presented.

Let us consider a unidirectional solidification system at constant
solidification velocity, V as shown in Figure 12. The coordinate
system attached to the planar interface moves with the constant
velocity V with respect to the phases of either side. Suppose a
sinusoidal ripple of infinitesimal amplitude, 5, with a wavelength
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FIGURE 12: INTERFACE GEOMETRY FOR SEKERKA'S THEORY
A = 2n/uw satisfying the relation
z = ¢(x,t) = §(t) sin w x

is introduced into the planar interface between liquid and solid.

wish to obtain an expression for & = dé/dt in order to see whether the
ripple grows (&>0) or decays (5<0). This requires us to solve the

following simultaneous equations, for the liquid,

3C

1
2 2o(y- =
72C + 5 (V-u) 2 0
vV T
72T + — & 0
Dth L¥4
and for the solid
gerr ¢ Y 3TD
Tt D, 32 0

th
subject to the boundary conditions

T, =0
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T, = mC, + T+ Tyhe (59)
= mC¢ + Ty - Tyréw? sin wx
vit) = g LK <g;—'>¢ - K (%)ﬂ (50)
cuemy [ ) - el

and to the conditions that for [§] much larger than any perturbation on
the interface, T, T' and C shall take on the values of the solutions
appropriate to the case of a planar interface. The notation is as
follows:

2 - 32 32
v wZ ' aT
C = concentration of solute in the liquid
D = solute diffusivity of the liquid (diffusion coefficiet)
v = averaqe solidification velocity
u = solute velocity due to external force
T = temnerature in the liquid
T' = temperature in the solid
K
Dy, = -t = thermal diffusivity »f the liquid
“
Dy =K = solid
Cs
KL’Ks = thermal conductivity of the liquid and solid, respectively
€ »C, = specific heat per unit volume of the liquid and solid, respectively
= slope of liquidus line on the phase diagram
TM = absolute melting point of the pure solvent
r = y/Q,capillary constant
Y = solid-liquid surface free energy

= latent heat of fusion of the solvent per unic¢ volume
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b
n

average curvature at a point of the interface

v = ¥+ 3% = interface velocity
k = distribution coefficient = ratio of the equilibrium concen-

tration of solute on the solid side of the interface to that
on the liquid side of the interface

subscript ¢ denotes the quantity under consideration is measured at the

interface.

Let T¢ and C¢ be the temperature and concentration at the interface
respectively, we have

[}
u

T

o T0 + a¢

T, *+ a8 sinwx (61a)

C

5 Co + b¢

C, * bé sin wx (61b)

where T0 and CO are the values for a flat interface and the second terms

are the first-order corrections corresponding to the infinitesimal

perturbation. a and b are coefficients to be determined. The solutions

of equations (55), (56), and (57) satisfying the condition for large

z and reducing to equations (61) on the interface z = » are the following:
GD

C(x,z) - Co = Vﬁl— n- exp( z)]+ &(b- G, ) sin wx e w2 (62a)
G D ‘wthl
T(x,z) - T, = [l-exp z)] + §(a-G) sin wx e (62b)
th
and on the solid side
G’ D'th h? (62¢)
T'(x,2)-T, = - expé———z)] + §(a-G') sin wx e t

where G and G' are the thermal gradients at the unperturbed flat inter-
face (5=0) in the liquid and solid, respectively, GC is the concentration
gradient in the liquid at the unperturbed flat interface, V':=V-u is tle

soiute velocity relative to that of the interface, and where
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1

1 [ z
ot = 3p 4 (G2 + 2]

“tp =

“th

v
2D

v
+ [——+ w2]
th 2Dy

v v z
-?—|—+[—|—+ w2]
Dth ZDth

Substituting equations (62) into equations (59) and (60), we can

determine a and b to the first order in 6.
equation (60), after straightforward but tedious algetra, we have the

expressio- ‘or /6 which is sought

$

)

as well as
V:
v:

where
X =
§=
G'

and p = 1-k

Stability of the interface with respect to an undulation depends on
the sign of /s; a positive value of §/6 for any w means growth of
some undulations and hence instability of the original flat interface

= 2w(V - %) <

MG, (¥ - g)-[Tyru?eg(6+8) 1w - Bv - &)
mmc+%w-%nw-%(v-§]

K [ -l Voo
Gv(g_-g) *q (KSG KLG)
DGc "
- —_— ¢ =
PCO p
K - K
> = average thermal conductivity of the system
K
(—)G = aeneralized thermal gradient in the liquid

K
(:?)G' = generalized thermal gradient in the solid
K
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whereas a negative sign for all . means decay of all undulations and

hence stability. In the p -esent analysis, the conditions O<k<l, m<0 and

G' and G>0 are assumed (because these hold true for the usual case). Also,
oniy the condition of u>0, i.e., solute atom velocity in the same direction
as the solidification velocity, is considered. There are two reasons why
u<0 is not considered. Physically, u<0 means that the solute will pile

up at the interface, producing a much more unstable ana thus more com-
plicated situation than in the u>0 case. Mathematically, when u<0, the in-
equality V-u > V- %»(which will be utilized presently) does not hold. If
this inequality is not valid, the denominator of equation (64) is not
necessarily positive, and the stability analysis becomes too complicated

to be accomplished within the time frame of the present study. But for

the u>0 condition. three different cases are analyzed below.

(a) v-2=9
P u DGc
From equation (66), we have V - B—= - BE—-which means Gc+0 and
0
v-Y
—B - —LL-as V- 2.,0. uUnder this condition, equation (64)
Gc pco P
becomes
D r 2 l. ' K
. e [t g (€49
S$.09 0
5 ) 2.4, - Q (D: (u*
K ™Yo

Everything on the right side of tr: above equation is positive except
@ which is less than zero. Therefore, we have found, when V - %»= 0,
that
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which means that the flat interface is always stable under this
condition. The physical meaning of V - Y20 can be explicitly seen
from the following relations. As V - u/p+0, or 6.~0, from equation (62)
we have (C(x,=) = Co. This means that the concentration of solute at
large distances from the interface is equal to the concentration at

the flat interface, or, there is no pile-up of solute at the interface
This condition can be realized by applying a force (such as a magnetic,
acceleration or other external force as in equation 53) on the solute
atoms in the direction of solidification with a magnitude of

1=k

F = m (KSG' - KLG) . (67)

Hence, an external force acting on solute atoms can be expressed in terms
of measurable material properties.

b v-259
(b) b
Under this condition, the following relations may easily be found.

Vi=V-u>V- §-> 0 sincep =z 1-k < 1;

u DGC
V--p-——R;>Ohencch<OandeC>0,
LA L Py.-u
and w¥ ) 5 > F {(/-u) > D (v p)

With these relations, all terms in the denominator of equation (64)
are positive. The sign of §/6, or the stability criterion, is solely
determined by the sign of the numerator of equation (64) or the sign
=f N(w) which is, from equation (64),

KV
N() = mG, [1 - — [()v 5 Tro? - 7 (6/46) (68)
w” = D - ‘b‘
= flo) - 5 (6'+8) + mG,
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2.4 (Continued)

where

<_‘<

fw) = - T, ru? - 2kac — (69)

M 1/2
[1+ (%2 02177 - 1eak %T

The function f(w) has the following properties:

(i) f(w) < 0.
(i) f(0) = -m6_ and f(=) = -=

(iii)  f(u) either decreases monotonically as w increases from zero
or it has only one maximum for some positive value of ..

Properties (i) and (ii) follow immediately from the expression for f(w),
equation (69). Property (iii) has been proved in a similar way as in
Reference (32;. The negativity of f(w) means that it always favors
stability; evidently it poses the least barrier to instability at the
frequency for which it attains its largest value (value of smallest
magni tude).

For the case in which f(«) decreases monatonically as « increases from
zero sou that |max f(w)| = |f(0)] = ch, the sign of N(w) is always
negative. Therefore, therve can be no instability under this condition.
This absolute stability situation occurs when df/du < 0 for w - 0.

For small ., equation (69) may be expanded in a Taylor's series
chD2 ,
flw) = -ch + (er— - TMr)w + ...

then the absolute stability (¢f/dw < 0 as w -~ 0) occurs when

or
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2.4 (Continued)
Since, from equation (66)
= .U
DGC = -pCO (v P)
ard from equation {62)

C(x,») = C_ = Co k

<_I<

k]

the condition of absolute stability (equation 70) in terms of measurable
quantities is

u kZTHI'V2

This absolute stability a when, from equation (70),

2
mGCO

which means that the capillary effect dominates the solute effect.

The o0id constitutional supercooling criterion(zg) is
-G+mG_ < 0 stable (72a)
-G+mGC > 0 unstable ; (72b)

Comparing 72b with the criterion of absolute stabiiity {equation 70),
ve may have a condition that
kT, rV'V

GG < —%2—— (73)

That is, the constitutional supercooling criterion for instability and
the condition for absolute stability could be satisfied simultaneously.
Hence, according to this theory, the constitutional supercooling is

not a sufficient condition to determine the interface stability.
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2.4 (Continued)

For the condition that

kZTMrv2
v - u,

p - (~my OpC_
or

v 12 2
A - (k v.) TMFV 3 k2(z+) TMT v

mGeD* k() D T b (74)

the stability criterion is very complicated. The stability conditions
will be discussed below using an analytical method similar to that
described by Sekerka.(33) From equation (68, the stability criterion is

M(w) < 0
or
G'+ G
- = fw)
ZmGC > 1+ mG_ (75)

From equation (69), we have
v

2 —
Cf) T Acull 6
'“éc A I AN I L

A new function Y(y) is now defined by

k' -
Y(y) = - %éﬂl.z y+ %/2’ (77)
c (1 + ey) -1+ 2
where
T,
y = ﬁﬂ—'wz >0
c
k'skyv—.
2
K 4chD
and &:T—T—Mrv.—z—
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2.4 (Continued)
The criterion for a stable interface, from equation (75), becomes

G+ 6
e > V- Yly) : (78)
C

From property (iii) of f(w), the Y(y) may have a minimum at a certain
value of y. Therefore, the system which is stable for all frequencies
has to satisfy the condition

6 +6

2mGC

> S {79)
where S = 1-[min. Y(y)] is defined as the stability function.

To find the value of y at which Y(y) has a minimum, we set

d¥(y) |
dy

"
o

From equation (77), we have

1/2 ok’
(T +ey) = (80)
N (A R N

Since w must be real, we have
1/2
(1 + eym) / -14+2k'">0

and
1/u
(P +ay ) =0
By taking the square root of both sides of equation (80}, there follows

p 2k - Dr - (ka7 =0 (81)

where r - (1 + eym)l/“. Since 2k'/A1/2. 0 and the quadratic term is
missing, equation (81) has one and only one positive and real root of r.
It is this positive root which corresponds to positive w. Since
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2.4 (Continued)

Yo = (r«-1) Asdk’ s (82)
it follows from the definition of S that

S(A,k') = 1-[min.¥Y(y)] = 1 + 3%7'° 3A%££~r- Ai%ﬁgkll r2 . (83)

According to equation (79), stability obtains when

G'+6G
G, S(Ak") . (84)

Using equations (65) and (66), the stability condition, equation (84),
can be written in terms of experimentally measurable guantities as

2K '

L G, Q4 k D V., )

ko 0 T e, () > S(AKY) (85)
If all the material coinstants, KL’ Ks’ G ks v, D and m are specified
by a choice of base material and solute, the left hand side of equation
(85), defined as a test function, is a function of four variables of
operation

2KL

GV - G Q ' D v
Iy ) = g v & e e, (86)

Suppressing the explicit appearance of the material constants in the
stability function, we call
vV, '
S (g ) = S(AK) (87)
Then for stability, we need the test function to be greater than the
stalility function, i.e.,

v v
Iy € > S g ) : (88)
By comparing the stability function, S(A,k') (equation 83), and equation
(81) (which we have calculated including the solute atoms moving with
velocity u) with Sekerka's stability function, (equations 11 and 14 in
Reference 33), the tunctional form of both functions is seen to be
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2.4 (Continued)

identical. Sekerka(33) has calculated his S(A,k) as a function of A

in the range O0<A<l for 16 values of k. Hi, results are plotted both in
linear and semilogarithm scales as shown ia Figure 2 and Figure 3 of
Reference 33. His results can be directly applied to our results by
changing his k and V to k'(zkyr) and V' (:V-u).

(c) v-%<o

This condition implies, from equation (66), that the solute in the
liquid is depleted at the interface (GC > 0) even for k<1. It can

be easily seen that, from equation (64), 3/& is always less than zero
if G' + G is positive. Therefore, the planar interface is a stab’e
conditior during the solidification, and microsegregation cannot occur.

It is possible to calculate and plot /5 as a function of frequency
(w=27/1) for any particular experimental case from equation (64). A
schematic graph is shown in Figure 13 for a cell growth experiment.
It can be seen that within the frequency range, wj<u<w,, §/5 is
positive and has a maximum value at e That i< at WS the
perturbation ¢ has the fastest growth and thc - cell size should
be dominated by this perturbation. Therefore, e can estimate the
order of magnitude of a cell size as Am=27/wm.

5/ ‘I

1
b

m

u)] W LU2

FIGURE 13: 4&/6 VS. w FOR UNSTABLE INTERFACE CONDITIONS
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2.4 {Continued)

As mentioned in Mullins and Sekerka's paper(32), there is no detailed agree-
ment between the theoretically predicted relationship and the experimentally
observea relationship of the cell size to the growth parameters. They

gave two reasons for this failure: (1) time-independent or steady-state
diffusion and temperature fields have been assumea in the calculation,

and (2) the cellular structure which develops in actual experiments

does not have a small amplitude. The first deficiency of the theory

was removed by Sekerka in 1967(34). He formulated a time-dependent
stability theory by using the same small perturbation technique. The
results of that theory are very complicated. However, the cell size
predicted in a simplified version of the time-dependent theory(35)

does still not agree with the observed structure. The main problem is

the second failure (above). To remove this obstacle, a finite amplitude
theory rather than the small perturbation technique is required. Then

the field equations and the boundary conditions all become nonlinear.

To date, to our best knowledge, no solution to the nonlinear problem

has been achieved.

Thus our theory, which describes an external force field acting on
solute atoms, follows a time-independent analysis similar to that of
Mullins and Sekerka(32? We can use the results to estimate the final
cell size only to an order of magnitude. We could extend our present
theory to a time-dependent theory, but even though such a theory is
very complicated, it does not improve the prediction of the final solid
substructures.
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APPENDIX A

SUMMARY OF PUBLICATIONS AND PRESENTATIONS PRODUCED
UNDER CONTRACT NAS8-28664

PUBLICATIONS

A Summary of Liquid State Models for Materials Processing
in Space, Boeinc Document D5-17268, August 1972.

Analysis of Field Effects on Dense Liquid Materials, NASA
CR-124294, May 1973.

"Qualitative Effects of Osci ~i¢ Fields on
Crystal Melts", Journal of Crys.>. o. wt 70, 310,
November 1973.

“Thermodynamic Properties Derived From the Free Volume
Model of Lianids", Metallurgical Tiansactions, 5, 643,
Marct 1974.

Further Analysis of Field Effects on Liquids and
Solidification, Boeing Document D256-10024, July 1974.

"External Field Etfects on Solidification: Ma- oscopic
and Microscopic Models", Proceedings of the 1974 AIAA//\SME
Thermophysics and Heat Transfer Conference, July 1974.

"External Field Effects on Diffusion and >olidification
Derived from the Fiee Volume Model", Submitted to Journal
of Applied Physics.

PRESENTAT IONS

“The Free Volume Model Equation of State", Annual Meeting
of SESAPS*, November 1972.

“External Field Effects on Solidi“ication Rate", Annual
Meeting of SESAPS*, November 19...
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APPENDIX A (Continued)

3. “Some Aspects of Present and Future Research in Space"
(Invited Pape:,, Annual Meeting of SESAPS*, November
1973.

4. “"External Field Effects on Solidification: Macroscopic

aad Microscopic Models" AIAA/ASME Thermophysics and Heat
Transfer Conference, July 1974.

*Southeast Su::tion of the American Physical Society
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APPENDIX B

DUUNDARY CONDITIONS ON MAGNETIC FIELDS
FOR THE CASE OF CZOCHRALSKI CRYSTAL GROWTH GEOMETRY

rom the Maxwell equation for the divergence of the magnetic induction
field, V-B = 0, it can be shown'21) that the normal component of B must
be continuous ac-oss each boundary, or

(8, - 8) - n=0 (B-1)

where n is a unit vector normal to the surface. Since
B=ul=- T, (B-2)

this condition implies that

;»] :-: :] = p-‘2 -\: :2 (8‘3)
For this condition to hold, it is obvious that the potential, :, must
itself be continuous acros. a boundary

5y = 2 (B-4)
and to insure physically reasonable results, we must impose the con-
ditions that : be finite everywhere and that at distances far from the
boundaries of interest, the field approach .he value the field would
have if there were no material boundaries present.

The folloving boundary conditions are based on the above principles,
and the assumption that the cylindrical geometry is uivided into
four regions as shown in Figure B-1, even though regions 3 and 4 are
phvsically identical.

2y (0,3,-=), =, (0,n,+=) = finite (8-5)
3 2

{rys,2) — - Hgr cos = (B-6)
r - x
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APPENDIX 8 (Continued)

v3(a,8,2) = 04(a,8,2) (8-7)
3P ¢
3 - .1
LEGR Rk (8-8)
~D4(b,9,2) = ¢2(b,8 ,Z) (B‘g)
3¢ 39
4 _ 2
0, T M2ar (B-10)
Q'4(‘“’1"0) = @1(7’,8,0), b<r<e (3-]])
uo ?:0 = ‘,x] F‘]O, b<r<a (B—]Z)
1
—;{ b
CRYIFTAL
o | %
]
I
-+ - ¢l
H H
o | @2
LIQUID -
be— _ —

FIGURE B-1: CZNCHRALSKI CEOMETRY FOR MAGNETIC POTENTIALS
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APPENDIX C
MAGNETIC FIELD FORCES ON MOVING
CHARGED MOLECULES IN A MELT

A molecule which possesses a net electric charge, q, and which is in
motion relative to magnetic field lines in a melt will experience
Lorentz forces just as will any charged particle moving in a magnetic
field. The evidence that particles in melts of semiconductor materials
are charged is stated by Glazov, et.al.(39), who suggest that in many
such melts, q = 4e where e is the electron charge. Thus the Lorentz
force on the molecule is

PL =quXB (c-1)
where

U= + Uy (c-2)

with ﬁo being an scillatory velocity, FO’ about some center of vibration,
¥, which moves through the melt with the translational velocity, ﬁt=?t.
The situation is represented schematically in Figure C-1.

“enter of
Vibration
Position
of jth Molecule
Molecule Positicn
g
P —

Origin

FIGURE C-1: ITINERANT usCILLATOR GEOMETRY

The velocities GO and Et may be obtained €ormally from the Iti.erant
(40). This model is based on the sclution of the two
coupled acceleration equations

Oscillatcr model

To* o "ot 40 (r0 - rt) = A (C-3)

Cc-1
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APPENDIX C (Continued)

—- 2
Fet "y = [} (C-4)

where "0 and ny are friction constants, 0 is the osciliation frequency
which is related to the intermolecular forces acting on the molecule,

R is a randomly fluctuating driving acceleration also related to inter-
molecular forces {and thus distances, 3j) and the term D contains the
random Brownian motion-type acceleration and, after the magnetic field
has been applied for some time greater than the initial transient

(or build-up) period, also contains accelerations arising from the
Lorentz force, equation C-1. Accelerations derived from the oscillatory
motions should have a net time averaged value of zero. D must also
include accelerations due to electrostatic forces “etween charged
molecules.

A more detailed analysis of magnetic forces on moving charged molecules
in a melt is beyond the scope of this study, since such an analysis
simultaneously involves two extremely difficult problems. Although
the Lorentz force itself is well understood, actually calculating
trajectories and velocities for particles which the force affects and
which are moving through a medium other than vacuum is not so simple.
The description of molecular motion (diffusion). is reasonably well
understood on a statistical or macroscopic basis (see sections 2.3

and 2.4), but on a microscopic basis, the motion of an individual
molecule in the absence of external forces depends on random processes
which are difficult to describe mathematically.

Thus even though the Itinerant Oscillator model may provide a formal
relation between Lorentz forces and charged particle motion in a melt,
much more theoretical effort is required in order to determine the
real nature of FL in melts of semiconductors.
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