275 research outputs found

    SO(2,1) conformal anomaly: Beyond contact interactions

    Get PDF
    The existence of anomalous symmetry-breaking solutions of the SO(2,1) commutator algebra is explicitly extended beyond the case of scale-invariant contact interactions. In particular, the failure of the conservation laws of the dilation and special conformal charges is displayed for the two-dimensional inverse square potential. As a consequence, this anomaly appears to be a generic feature of conformal quantum mechanics and not merely an artifact of contact interactions. Moreover, a renormalization procedure traces the emergence of this conformal anomaly to the ultraviolet sector of the theory, within which lies the apparent singularity.Comment: 11 pages. A few typos corrected in the final versio

    Linear vs. nonlinear effects for nonlinear Schrodinger equations with potential

    Full text link
    We review some recent results on nonlinear Schrodinger equations with potential, with emphasis on the case where the potential is a second order polynomial, for which the interaction between the linear dynamics caused by the potential, and the nonlinear effects, can be described quite precisely. This includes semi-classical regimes, as well as finite time blow-up and scattering issues. We present the tools used for these problems, as well as their limitations, and outline the arguments of the proofs.Comment: 20 pages; survey of previous result

    Cardiac cell modelling: Observations from the heart of the cardiac physiome project

    Get PDF
    In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems. Finally, in the context of parameter identification and model reuse within the Cardiac Physiome, we suggest some future priority areas for this field

    Representations of the discrete inhomogeneous Lorentz group and Dirac wave equation on the lattice

    Full text link
    We propose the fundamental and two dimensional representation of the Lorentz groups on a (3+1)-dimensional hypercubic lattice, from which representations of higher dimensions can be constructed. For the unitary representation of the discrete translation group we use the kernel of the Fourier transform. From the Dirac representation of the Lorentz group (including reflections) we derive in a natural way the wave equation on the lattice for spin 1/2 particles. Finally the induced representation of the discrete inhomogeneous Lorentz group is constructed by standard methods and its connection with the continuous case is discussed.Comment: LaTeX, 20 pages, 1 eps figure, uses iopconf.sty (late submission

    Spinor vortices in non-relativistic Chern-Simons theory

    Full text link
    The non-relativistic `Dirac' equation of L\'evy-Leblond is used to describe a spin {\small 1/2} particle interacting with a Chern-Simons gauge field. Static, purely magnetic, self-dual spinor vortices are constructed. The solution can be `exported' to a uniform magnetic background field.Comment: 7 pages, Plain Te

    Titanium Isotope Anomalies in Allende Inclusions

    Get PDF
    We report on Ti isotope abundances in Ca-Al-rich inclusions from Allende. Data are obtained using a TiO^+ beam. The data on oxides of isotopes 46-49 are insensitive to the correction for isobaric interferences among the TiO^+ species

    Endemic isotopic anomalies in titanium

    Get PDF
    Abundances of the titanium isotopes were determined using a new high-precision technique that shows terrestrial, lunar, and bulk meteorite samples to be indistinguishable. Ca-Al-Ti-rich inclusions in the Allende meteorite are found to contain Ti of widely varying isotopic composition reflecting the presence of at least three nucleosynthetic components. The anomalies in Ti appear to be relatively widespread and, when correlated with Ca data, provide a clue to nucleosynthesis in the neighborhood of the iron peak and to the late-stage nucleosynthetic processes which immediately preceded formation of the solar nebula
    • …
    corecore