20,088 research outputs found
Positive ion temperatures above the F-layer maximum
Positive ion temperatures above F layer maximum from Ariel I satellite ion mass analyze
A synoptic view of ionic constitution above the F-layer maximum
Ionic composition above F layer maximum from Ariel I satellite ion mass spectromete
Black hole formation in core-collapse supernovae and time-of-flight measurements of the neutrino masses
In large stars that have exhausted their nuclear fuel, the stellar core collapses to a hot and dense proto-neutron star that cools by the radiation of neutrinos and antineutrinos of all flavors. Depending on its final mass, this may become either a neutron star or a black hole. Black hole formation may be triggered by mass accretion or a change in the high-density equation of state. We consider the possibility that black hole formation happens when the flux of neutrinos is still measurably high. If this occurs, then the neutrino signal from the supernova will be terminated abruptly (the transition takes ≲0.5 ms). The properties and duration of the signal before the cutoff are important measures of both the physics and astrophysics of the cooling proto-neutron star. For the event rates expected in present and proposed detectors, the cutoff will generally appear sharp, thus allowing model-independent time-of-flight mass tests for the neutrinos after the cutoff. If black hole formation occurs relatively early, within a few (∼1) seconds after core collapse, then the expected luminosities are of order LBH=1052 erg/s per flavor. In this case, the neutrino mass sensitivity can be extraordinary. For a supernova at a distance D=10 kpc, SuperKamiokande can detect a ν̅e mass down to 1.8 eV by comparing the arrival times of the high-energy and low-energy neutrinos in ν̅e+p→e++n. This test will also measure the cutoff time, and will thus allow a mass test of νμ and ντ relative to ν̅e. Assuming that νμ and ντ are nearly degenerate, as suggested by the atmospheric neutrino results, masses down to about 6 eV can be probed with a proposed lead detector of mass MD=4 kton (OMNIS). Remarkably, the neutrino mass sensitivity scales as (D/LBHMD)1/2. Therefore, direct sensitivity to all three neutrino masses in the interesting few-eV range is realistically possible; there are no other known techniques that have this capability
Flexible high speed codec
The project's objective is to develop an advanced high speed coding technology that provides substantial coding gains with limited bandwidth expansion for several common modulation types. The resulting technique is applicable to several continuous and burst communication environments. Decoding provides a significant gain with hard decisions alone and can utilize soft decision information when available from the demodulator to increase the coding gain. The hard decision codec will be implemented using a single application specific integrated circuit (ASIC) chip. It will be capable of coding and decoding as well as some formatting and synchronization functions at data rates up to 300 megabits per second (Mb/s). Code rate is a function of the block length and can vary from 7/8 to 15/16. Length of coded bursts can be any multiple of 32 that is greater than or equal to 256 bits. Coding may be switched in or out on a burst by burst basis with no change in the throughput delay. Reliability information in the form of 3-bit (8-level) soft decisions, can be exploited using applique circuitry around the hard decision codec. This applique circuitry will be discrete logic in the present contract. However, ease of transition to LSI is one of the design guidelines. Discussed here is the selected coding technique. Its application to some communication systems is described. Performance with 4, 8, and 16-ary Phase Shift Keying (PSK) modulation is also presented
Study of tooling concepts for manufacturing operations in space Final report
Mechanical linkage device for manufacturing operations with orbital workshop
Non-linear optics with two trapped atoms
We show theoretically that two atomic dipoles in a resonator constitute a
non-linear medium, whose properties can be controlled through the relative
position of the atoms inside the cavity and the detuning and intensity of the
driving laser. We identify the parameter regime where the system operates as a
parametric amplifier, based on the cascade emission of the collective dipole of
the atoms, and determine the corresponding spectrum of squeezing of the field
at the cavity output. This dynamics could be observed as a result of
self-organization of laser-cooled atoms in resonators.Comment: 11 pages, 8 figure
QCD Thermodynamics with Improved Actions
The thermodynamics of the SU(3) gauge theory has been analyzed with tree
level and tadpole improved Symanzik actions. A comparison with the continuum
extrapolated results for the standard Wilson action shows that improved actions
lead to a drastic reduction of finite cut-off effects already on lattices with
temporal extent . Results for the pressure, the critical temperature,
surface tension and latent heat are presented. First results for the
thermodynamics of four-flavour QCD with an improved staggered action are also
presented. They indicate similarly large improvement factors for bulk
thermodynamics.Comment: Talk presented at LATTICE96(finite temperature) 4 pages, LaTeX2e
file, 6 eps-file
The effect of composition on the mechanism of stress-corrosion cracking of titanium alloys in nitrogen tetroxide, and aqueous and hot- salt environments Annual summary report, 1 May 1967 - 30 Apr. 1968
Stress corrosion data for titanium alloys in aqueous, hot salt, and nitrogen dioxide environment
Optically mediated nonlinear quantum optomechanics
We consider theoretically the optomechanical interaction of several
mechanical modes with a single quantized cavity field mode for linear and
quadratic coupling. We focus specifically on situations where the optical
dissipation is the dominant source of damping, in which case the optical field
can be adiabatically eliminated, resulting in effective multimode interactions
between the mechanical modes. In the case of linear coupling, the coherent
contribution to the interaction can be exploited e.g. in quantum state swapping
protocols, while the incoherent part leads to significant modifications of cold
damping or amplification from the single-mode situation. Quadratic coupling can
result in a wealth of possible effective interactions including the analogs of
second-harmonic generation and four-wave mixing in nonlinear optics, with
specific forms depending sensitively on the sign of the coupling. The
cavity-mediated mechanical interaction of two modes is investigated in two
limiting cases, the resolved sideband and the Doppler regime. As an
illustrative application of the formal analysis we discuss in some detail a
two-mode system where a Bose-Einstein condensate is optomechanically linearly
coupled to the moving end mirror of a Fabry-P\'erot cavity.Comment: 11 pages, 8 figure
- …