537 research outputs found
Activation of the nucleus taeniae of the amygdala by umami taste in domestic chicks (Gallus gallus)
In chickens, the sense of taste plays an important role in detecting nutrients and choosing feed. The molecular mechanisms underlying the taste-sensing system of chickens are well studied, but the neural mechanisms underlying taste reactivity have received less attention. Here we report the short-term taste behaviour of chickens towards umami and bitter (quinine) taste solutions and the associated neural activity in the nucleus taeniae of the amygdala, nucleus accumbens and lateral septum. We found that chickens had more contact with and drank greater volumes of umami than bitter or a water control, and that chicks displayed increased head shaking in response to bitter compared to the other tastes. We found that there was a higher neural activity, measured as c-Fos activation, in response to umami taste in the right hemisphere of the nucleus taeniae of the amygdala. In the left hemisphere, there was a higher c-Fos activation of the nucleus taeniae of the amygdala in response to bitter than in the right hemisphere. Our findings provide clear evidence that chickens respond differently to umami and bitter tastes, that there is a lateralised response to tastes at the neural level, and reveals a new function of the avian nucleus taeniae of the amygdala as a region processing reward information
Vibrational spectrum of solid picene (C_22H_14)
Recently, Mitsuhashi et al., have observed superconductivity with transition
temperature up to 18 K in potassium doped picene (C22H14), a polycyclic
aromatic hydrocarbon compound [Nature 464 (2010) 76]. Theoretical analysis
indicate the importance of electron-phonon coupling in the superconducting
mechanisms of these systems, with different emphasis on inter- and
intra-molecular vibrations, depending on the approximations used. Here we
present a combined experimental and ab-initio study of the Raman and infrared
spectrum of undoped solid picene, which allows us to unanbiguously assign the
vibrational modes. This combined study enables the identification of the modes
which couple strongly to electrons and hence can play an important role in the
superconducting properties of the doped samples
Oral D-Aspartate Treatment Improves Sperm Fertility in Both Young and Adult B6N Mice
D-Aspartate (D-Asp) treatment improved the fertility of young male C57BL/6N mice in vivo revealing a direct role on capacitation, acrosome reaction, and fertility in vitro in young males only. We investigated whether the positive effect of D-Asp on fertility could be extended to adult males and evaluated the efficacy of a 2- or 4-week-treatment in vivo. Therefore, 20 mM sodium D-Asp was supplied in drinking water to males of different ages so that they were 9 or 16 weeks old at the end of the experiments. After sperm freezing, the in vitro fertilization (IVF) rate, the birth rate, hormone levels (luteinizing hormone (LH), epitestosterone, and testosterone), the sperm quality (morphology, abnormalities, motility, and velocity), the capacitation rate, and the acrosome reaction were investigated. Oral D-Asp treatment improves the fertilizing capability in mice regardless of the age of the animals. Importantly, a short D-Asp treatment of 2 weeks in young males elevates sperm parameters to the levels of untreated adult animals. In vivo, D-Asp treatment highly improves sperm quality but not sperm concentration. Therefore, D-Asp plays a beneficial role in mouse male fertility and may be highly relevant for cryorepositories to improve mouse sperm biobanking
Pathophysiology of hypoxemia in mechanically-ventilated patients with COVID-19: A computed tomography study
The pathogenesis of hypoxemia during acute respiratory distress syndrome caused by SARS-CoV-2 infection (C-ARDS) is debated. Some observations led to hypothesize ventilation to perfusion mismatch, rather than anatomical shunt, as the main determinant of hypoxemia. In this observational study 24 C-ARDS patients were studied 1 (0–1) days after intubation. Patients underwent a CT scan analysis to estimate anatomical shunt and a clinical test to measure venous admixture at two fractions of inspired oxygen (FiO2), to eliminate oxygen-responsive mechanisms of hypoxemia (ventilation to perfusion mismatch and diffusion limitation). In 10 out of 24 patients venous admixture was higher than anatomical shunt both at clinical (≈50 %) and 100 % FiO2. These patients were ventilated with a higher PEEP and had lower amount of anatomical shunt compared with patients with venous admixture equal/lower than anatomical shunt. In a subset of C-ARDS patients early after endotracheal intubation, hypoxemia might be explained by an abnormally high perfusion of a relatively low anatomical shunt
Fast branching algorithm for Cluster Vertex Deletion
In the family of clustering problems, we are given a set of objects (vertices
of the graph), together with some observed pairwise similarities (edges). The
goal is to identify clusters of similar objects by slightly modifying the graph
to obtain a cluster graph (disjoint union of cliques). Hueffner et al. [Theory
Comput. Syst. 2010] initiated the parameterized study of Cluster Vertex
Deletion, where the allowed modification is vertex deletion, and presented an
elegant O(2^k * k^9 + n * m)-time fixed-parameter algorithm, parameterized by
the solution size. In our work, we pick up this line of research and present an
O(1.9102^k * (n + m))-time branching algorithm
Botanical sources, chemistry, analysis, and biological activity of furanocoumarins of pharmaceutical interest
The aim of this work is to provide a critical review of plant furanocoumarins from different points of view, including their chemistry and biosynthetic pathways to their extraction, analysis, and synthesis, to the main biological activities found for these active compounds, in order to highlight their potential within pharmaceutical science. The limits and the possible improvements needed for research involving these molecules are also highlighted and discussed
Lung response to prone positioning in mechanically-ventilated patients with COVID-19
Background: Prone positioning improves survival in moderate-to-severe acute respiratory distress syndrome (ARDS) unrelated to the novel coronavirus disease (COVID-19). This benefit is probably mediated by a decrease in alveolar collapse and hyperinflation and a more homogeneous distribution of lung aeration, with fewer harms from mechanical ventilation. In this preliminary physiological study we aimed to verify whether prone positioning causes analogue changes in lung aeration in COVID-19. A positive result would support prone positioning even in this other population. Methods: Fifteen mechanically-ventilated patients with COVID-19 underwent a lung computed tomography in the supine and prone position with a constant positive end-expiratory pressure (PEEP) within three days of endotracheal intubation. Using quantitative analysis, we measured the volume of the non-aerated, poorly-aerated, well-aerated, and over-aerated compartments and the gas-to-tissue ratio of the ten vertical levels of the lung. In addition, we expressed the heterogeneity of lung aeration with the standardized median absolute deviation of the ten vertical gas-to-tissue ratios, with lower values indicating less heterogeneity. Results: By the time of the study, PEEP was 12 (10–14) cmH2O and the PaO2:FiO2 107 (84–173) mmHg in the supine position. With prone positioning, the volume of the non-aerated compartment decreased by 82 (26–147) ml, of the poorly-aerated compartment increased by 82 (53–174) ml, of the normally-aerated compartment did not significantly change, and of the over-aerated compartment decreased by 28 (11–186) ml. In eight (53%) patients, the volume of the over-aerated compartment decreased more than the volume of the non-aerated compartment. The gas-to-tissue ratio of the ten vertical levels of the lung decreased by 0.34 (0.25–0.49) ml/g per level in the supine position and by 0.03 (− 0.11 to 0.14) ml/g in the prone position (p < 0.001). The standardized median absolute deviation of the gas-to-tissue ratios of those ten levels decreased in all patients, from 0.55 (0.50–0.71) to 0.20 (0.14–0.27) (p < 0.001). Conclusions: In fifteen patients with COVID-19, prone positioning decreased alveolar collapse, hyperinflation, and homogenized lung aeration. A similar response has been observed in other ARDS, where prone positioning improves outcome. Therefore, our data provide a pathophysiological rationale to support prone positioning even in COVID-19
Potentialities of High-Resolution 3-D CZT Drift Strip Detectors for Prompt Gamma-Ray Measurements in BNCT
Recently, new high-resolution cadmium–zinc–telluride (CZT) drift strip detectors for room temperature gamma-ray spectroscopic imaging were developed by our group. The CZT detectors equipped with orthogonal anode/cathode collecting strips, drift strips and dedicated pulse processing allow a detection area of 6 × 20 mm2 and excellent room temperature spectroscopic performance (0.82% FWHM at 661.7 keV). In this work, we investigated the potentialities of these detectors for prompt gamma-ray spectroscopy (PGS) in boron neutron capture therapy (BNCT). The detectors, exploiting the measurement of the 478 keV prompt gamma rays emitted by 94%7Li nuclides from the10B(n, α)7Li reaction, are very appealing for the development of single-photon emission computed tomography (SPECT) systems and Compton cameras in BNCT. High-resolution gamma-ray spectra from10B samples under thermal neutrons were measured at the T.R.I.G.A. Mark II research nuclear reactor of the University of Pavia (Italy)
- …