60 research outputs found

    CoreSOAR Core Degradation State-of-the Art Report Update: Conclusions [in press]

    Get PDF
    In 1991 the CSNI published the first State-of-the-Art Report on In-Vessel Core Degradation, which was updated to 1995 under the EC 3rd Framework programme. These covered phenomena, experimental programmes, material data, main modelling codes, code assessments, identification of modelling needs, and conclusions including the needs for further research. This knowledge was fundamental to such safety issues as in-vessel melt retention of the core, recovery of the core by water reflood, hydrogen generation and fission product release. In the last 20 years, there has been much progress in understanding, with major experimental series finished, e.g. the integral in-reactor Phébus FP tests, while others have many tests completed, e.g. the electrically-heated QUENCH series on reflooding degraded rod bundles, and one test using a debris bed. The small-scale PRELUDE/PEARL experiments study debris bed quench, while LIVE examines melt pool behaviour in the lower head using simulant materials. The integral severe accident modelling codes, such as MELCOR and MAAP (USA) and ASTEC (Europe), encapsulate current knowledge in a quantitative way. After two EC-funded projects on the SARNET network of excellence, continued in NUGENIA, it is timely to take stock of the vast range of knowledge and technical improvements gained in the experimental and modelling areas. The CoreSOAR project, in NUGENIA/SARNET, drew together the experience of 11 European partners to update the state of the art in core degradation, finishing at the end of 2018. The review covered knowledge of phenomena, available integral experiments, separate-effects data, modelling codes and code validation, then drawing overall conclusions and identifying needs for further research. The final report serves as a reference for current and future research programmes concerning core degradation in NUGENIA, in other EC research projects such as in Horizon2020 and for projects under the auspices of OECD/NEA/CSNI

    Main outcomes of the Phebus FPT1 uncertainty and sensitivity analysis in the EU-MUSA project

    Get PDF
    The Management and Uncertainties of Severe Accidents (MUSA) project was funded in HORIZON 2020 and is coordinated by CIEMAT (Spain). The project aims at consolidating a harmonized approach for the analysis of uncertainties and sensitivities associated with Severe Accidents (SAs) analysis, focusing on source term figures of merit. The Application of Uncertainty Quantification (UQ) Methods against Integral Experiments (AUQMIE – Work Package 4 (WP4)), led by ENEA (Italy), was devoted to apply and test UQ methodologies adopting the internationally recognized PHEBUS FPT1 test. FPT1 was chosen to test UQ methodologies because, even though it is a simplified SA scenario, it was representative of the in-vessel phase of a severe accident initiated by a break in the cold leg of a PWR primary circuit. WP4 served as a platform to identify and discuss the issues encountered in the application of UQ methodol ogies to SA analyses (e.g. discuss the UQ methodology, perform the coupling between the SA codes and the UQ tools, define the results post-processing methods, etc.). The purpose of this paper is to describe the MUSA PHEBUS FPT1 uncertainty application exercise with the related specifications and the methodologies used by the partners to perform the UQ exercise. The main outcomes and lessons learned of the analysis are: scripting was in general needed for the SA code and uncertainty tool coupling and to have more flexibility; particular attention should be devoted to the proper choice of the input uncertain parameters; outlier values of figures of merit should be carefully analyzed; the computational time is a key element to perform UQ in SA; the large number of uncertain input parameters may complicate the interpretation of correlation or sensitivity analysis; there is the need for a statistically solid handling of failed calculations

    First outcomes from the PHEBUS FPT1 uncertainty application done in the EU MUSA project

    Get PDF
    The Management and Uncertainties of Severe Accidents (MUSA) project, founded in HORIZON 2020 and coordinated by CIEMAT (Spain), aims to consolidate a harmonized approach for the analysis of uncertainties and sensitivities associated with Severe Accidents (SAs) by focusing on Source Term (ST) Figure of Merits (FOM). In this framework, among the 7 MUSA WPs the Application of Uncertainty Quantification (UQ) Methods against Integral Experiments (AUQMIE – Work Package 4 (WP4)), led by ENEA (Italy), looked at applying and testing UQ methodologies, against the internationally recognized PHEBUS FPT1 test. Considering that FPT1 is a simplified but representative SA scenario, the main target of the WP4 is to train project partners to perform UQ for SA analyses. WP4 is also a collaborative platform for highlighting and discussing results and issues arising from the application of UQ methodologies, already used for design basis accidents, and in MUSA for SA analyses. As a consequence, WP4 application creates the technical background useful for the full plant and spent fuel pool applications planned along the MUSA project, and it also gives a first contribution for MUSA best practices and lessons learned. 16 partners from different world regions are involved in the WP4 activities. The purpose of this paper is to describe the MUSA PHEBUS FPT1 uncertainty application exercise, the methodologies used by the partners to perform the UQ exercise, and the first insights coming out from the calculation phase

    A laser-based system to heat nuclear fuel pellets at high temperature

    No full text
    International audienceAnnealing tests are of utmost importance in nuclear fuel research, particularly to study the thermophysical properties of the material, microstructure evolution, or the released gas as a function of temperature. As an alternative to conventional furnace or induction annealing, we report on a laser-heating experiment allowing one to heat a nuclear fuel pellet made of uranium dioxide, UO2, or potentially other nuclear fuel pellets in an isothermal and controlled manner. For that purpose, we propose to use an indirect heating method based on a two compartment tungsten crucible, one containing the sample and the other acting as a laser susceptor for efficient and homogeneous heating of the assembly. With this concept, we demonstrate the heating of UO2 samples up to 1500 °C at a maximum heating rate of 30 °C/s with the use of two 500 W lasers. The system is, however, scalable to higher heating rates or higher temperatures by increasing the laser power up to few kW. The experiment has been designed to heat a pressurized water reactor fuel pellet, but the concept could be easily applied to other sample geometries or materials

    Contribution to the study of fission products release from nuclear fuels in severe accident conditions: effect of the pO 2 on Cs, Mo and Ba speciation

    No full text
    International audienceThe objective of this work is to experimentally investigate the effect of the oxygen potential on the fuel and FP chemical behaviour in conditions representative of a severe accident. More specifically, the speciation of Cs, Mo and Ba is investigated. These three highly reactive FP are among the most abundant elements produced through 235U and 239Pu thermal fission and may have a significant impact on human health and environmental contamination in case of a light water reactor severe accident. This work has set out to contribute to the following three fields: providing experimental data on Pressurized Water Reactor (PWR) MOX fuel behaviour submitted to severe accident conditions and related FP speciation; going further in the understanding of FP speciation mechanisms at different stages of a severe accident; developing a method to study volatile FP behaviour, involving the investigation of SIMFuel samples manufactured at low temperature through SPS. In this paper, a focus is made on the impact of the oxygen potential towards the interaction between irradiated MOX fuels and the cladding, the interaction between Mo and Ba under oxidizing conditions and the assessment of the oxygen potential during sintering
    corecore