47,317 research outputs found

    Measuring and analysing vibration motors in insoles via accelerometers

    Get PDF
    Purpose: Falling is a major public health concern among elderly people, and they often cause serious injuries1,2. They most frequently occur during walking and are associated with the chronic deterioration in the neuromuscular and sensory systems, as well as with ankle muscle weakness and lower endurance of these muscles to fatigue1,3. Vibrating insoles, providing a subsensory mechanical noise signal to the plantar side of the feet, may improve balance in healthy young and older people and in patients with stroke or diabetic neuropathy4. The object of this study is to find the most suitable vibrator to put into the insole which can effectively improve the balance control of the elderlies. Method: We choose three different vibration actuators (micro vibration motor, brushless motor and eccentric motor) with two different weights on the insole. First, we put three same motors and two accelerometers on the insole, as shown in Figure1, then attach another layer on both side of the insole. Second, connect the motors to the power supply and the accelerometer to NI PXI-1033 spectrum analyzer which is used to collect the accelerometers' data. At last, using Fast Fourier Transform (FFT) to analyze and compare the results to see which motor is the most stable and suitable to put into the insole. Results & Discussion: The results showed that the most stable one is the brushless motor. The reason why the frequency is stable is that the relationship between voltage and frequency is linear, and the error is small through continuous measurements. On the other hand, when a person weight 55 kg stands on the insole, the frequency isn't affected by the weight. These two results appear very similar to each other, as shown in Figure 2. According to the result, we use the brushless motor to be our vibrator in the insole, and hope this will help the elderlies improve their balance control ability more efficiency

    Interaction driven metal-insulator transition in strained graphene

    Full text link
    The question of whether electron-electron interactions can drive a metal to insulator transition in graphene under realistic experimental conditions is addressed. Using three representative methods to calculate the effective long-range Coulomb interaction between π\pi-electrons in graphene and solving for the ground state using quantum Monte Carlo methods, we argue that without strain, graphene remains metallic and changing the substrate from SiO2_2 to suspended samples hardly makes any difference. In contrast, applying a rather large -- but experimentally realistic -- uniform and isotropic strain of about 15%15\% seems to be a promising route to making graphene an antiferromagnetic Mott insulator.Comment: Updated version: 6 pages, 3 figure

    The role of electron-electron interactions in two-dimensional Dirac fermions

    Full text link
    The role of electron-electron interactions on two-dimensional Dirac fermions remains enigmatic. Using a combination of nonperturbative numerical and analytical techniques that incorporate both the contact and long-range parts of the Coulomb interaction, we identify the two previously discussed regimes: a Gross-Neveu transition to a strongly correlated Mott insulator, and a semi-metallic state with a logarithmically diverging Fermi velocity accurately described by the random phase approximation. Most interestingly, experimental realizations of Dirac fermions span the crossover between these two regimes providing the physical mechanism that masks this velocity divergence. We explain several long-standing mysteries including why the observed Fermi velocity in graphene is consistently about 20 percent larger than the best values calculated using ab initio and why graphene on different substrates show different behavior.Comment: 11 pages, 4 figure

    Density functional theory of inhomogeneous liquids. I. The liquid-vapor interface in Lennard-Jones fluids

    Full text link
    A simple model is proposed for the direct correlation function (DCF) for simple fluids consisting of a hard-core contribution, a simple parametrized core correction, and a mean-field tail. The model requires as input only the free energy of the homogeneous fluid, obtained, e.g., from thermodynamic perturbation theory. Comparison to the DCF obtained from simulation of a Lennard-Jones fluid shows this to be a surprisingly good approximation for a wide range of densities. The model is used to construct a density functional theory for inhomogeneous fluids which is applied to the problem of calculating the surface tension of the liquid-vapor interface. The numerical values found are in good agreement with simulation

    Ultralong Copper Phthalocyanine Nanowires with New Crystal Structure and Broad Optical Absorption

    Full text link
    The development of molecular nanostructures plays a major role in emerging organic electronic applications, as it leads to improved performance and is compatible with our increasing need for miniaturisation. In particular, nanowires have been obtained from solution or vapour phase and have displayed high conductivity, or large interfacial areas in solar cells. In all cases however, the crystal structure remains as in films or bulk, and the exploitation of wires requires extensive post-growth manipulation as their orientations are random. Here we report copper phthalocyanine (CuPc) nanowires with diameters of 10-100 nm, high directionality and unprecedented aspect ratios. We demonstrate that they adopt a new crystal phase, designated eta-CuPc, where the molecules stack along the long axis. The resulting high electronic overlap along the centimetre length stacks achieved in our wires mediates antiferromagnetic couplings and broadens the optical absorption spectrum. The ability to fabricate ultralong, flexible metal phthalocyanine nanowires opens new possibilities for applications of these simple molecules

    Changes in the soil organic carbon balance on China’s cropland during the last two decades of the 20th century

    Get PDF
    Agro-ecosystems play an important role in regulating global changes caused by greenhouse gas emissions. Restoration of soil organic carbon (SOC) in agricultural soils can not only improve soil quality but also influence climate change and agronomic productivity. With about half of its land area under agricultural use, China exhibits vast potential for carbon (C) sequestration that needs to be researched. Chinese cropland has experienced SOC change over the past century. The study of SOC dynamics under different bioclimatic conditions and cropping systems can help us to better understand this historical change, current status, the impacts of bioclimatic conditions on SOC and future trends. We used a simulation based on historical statistical data to analyze the C balance of Chinese croplands during the 1980s and 1990s, taking into account soil, climate and agricultural management. Nationwide, 77.6% of the national arable land is considered to be in good condition. Appropriate farm management practices should be adopted to improve the poor C balance of the remaining 22.4% of cropland to promote C sequestration

    A diffusion Monte Carlo study of small para-Hydrogen clusters

    Get PDF
    Ground state energies and chemical potentials of parahydrogen clusters are calculated from 3 to 40 molecules using the diffusion Monte Carlo technique with two different pH2-pH2 interactions. This calculation improves a previous one by the inclusion of three-body correlations in the importance sampling, by the time step adjustement and by a better estimation of the statistical errors. Apart from the cluster with 13 molecules, no other magic clusters are predicted, in contrast with path integral Monte Carlo results
    corecore