16 research outputs found

    Complete genome sequence of universal bacteriophage host strain Campylobacter jejuni subsp. jejuni PT14

    Get PDF
    Campylobacter jejuni strain PT14 is a clinical isolate previously used to propagate bacteriophages in the United Kingdom phage typing scheme. The strain has proven useful in the isolation of Campylobacter bacteriophages from several sources, and it functions as a model host in phage therapy experiments with poultry and poultry meat

    Diploastrea heliopora Sr/Ca and δ18O records from northeast Luzon, Philippines : an assessment of interspecies coral proxy calibrations and climate controls of sea surface temperature and salinity

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Paleoceanography 32 (2017): 424–438, doi:10.1002/2017PA003098.The Indo-Pacific coral Diploastrea heliopora reveals regional multidecadal- to centennial- scale climate variability using coral carbonate δ18O (δ18Oc) as a combined proxy for sea surface temperature (SST) and sea surface salinity (SSS). However, to assess the coral's full potential in resolving climatic events, an independent SST proxy would be more advantageous. We examined both Sr/Ca and δ18O of Diploastrea against an adjacent Porites lobata core collected from northeast Luzon, Philippines. Winter Sr/Ca data from Diploastrea show a significant correlation to SST (r = −0.41, p < 0.05, (root-mean-square of the residual) RMSR = 0.81°C) and provide a proxy with similar sensitivity as Porites (r = −0.57, p < 0.05, RMSR = 0.62°C). An interspecies SST record is shown to be robust and used for a reconstruction of the Pacific Decadal Oscillation during boreal winter (r = −0.70, p = 0.02). While we were unable to generate a robust Diploastrea δ18O-SSS calibration at interannual timescale, the freshening trend toward the present, commonly observed in the region, is qualitatively captured in Diploastrea δ18O. Comparison with Porites δ18O and instrumental SSS records shows that the magnitude of freshening is consistent between coral species. Wet and dry season Porites δ18O provide support for the relative influence of El Niño–Southern Oscillation events and local precipitation to SSS variability at our site. The multiproxy, multispecies approach of this study further strengthens the evidence for Diploastrea as an alternate climate archive in the Indo-Pacific region and seals its potential in helping resolve less understood global-scale climate phenomena.National Research Foundation Singapore (NRF) Grant Number: NRF-RF2012-0

    Coral records of temperature and salinity in the tropical western Pacific reveal influence of the Pacific Decadal Oscillation since the late nineteenth century

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ramos, R. D., Goodkin, N. F., Siringan, F. P., & Hughen, K. A. Coral records of temperature and salinity in the tropical western Pacific reveal influence of the Pacific Decadal Oscillation since the late nineteenth century. Paleoceanography and Paleoclimatology, 34(8), (2019): 1344-1358, doi: 10.1029/2019PA003684.The Pacific Decadal Oscillation (PDO) is a complex aggregate of different atmospheric and oceanographic forcings spanning the extratropical and tropical Pacific. The PDO has widespread climatic and societal impacts, thus understanding the processes contributing to PDO variability is critical. Distinguishing PDO‐related variability is particularly challenging in the tropical Pacific due to the dominance of the El Niño–Southern Oscillation and influence of anthropogenic warming signals. Century‐long western Pacific records of subannual sea surface temperature (SST) and sea surface salinity (SSS), derived from coral Sr/Ca and δ18O profiles, respectively, allow for evaluating different climatic sensitivities and identifying PDO‐related variability in the region. The summer Sr/Ca‐SST record provides evidence of a significant SST increase, likely tied to greenhouse gas emissions. Anthropogenic warming is masked in the winter Sr/Ca‐SST record by interannual to multidecadal scale changes driven by the East‐Asian Winter Monsoon and the PDO. Decadal climate variability during winter is strongly correlated to the PDO, in agreement with other PDO records in the region. The PDO also exerts influence on the SSS difference between the dry and wet season coral δ18O (δ18Oc)‐SSS records through water advection. The PDO and El Niño–Southern Oscillation constructively combine to enhance/reduce advection of saline Kuroshio waters at our site. Overall, we are able to demonstrate that climate records from a tropical reef environment significantly capture PDO variability and related changes over the period of a century. This implies that the tropical western Pacific is a key site in understanding multifrequency climate variability, including its impact on tropical climate at longer timescales.The authors would like to thank J. Ossolinski, J. Aggangan, J. Quevedo, R. Lloren, G. Albano, J. Perez, and A. Bolton for their help in acquiring core samples in the field. The detailed comments and suggestions of two anonymous reviewers significantly improved the original manuscript. This research was funded by the National Research Foundation Singapore under its Singapore NRF Fellowship scheme awarded to N. F. Goodkin (National Research Fellow award NRF‐RF2012‐03), as administered by the Earth Observatory of Singapore and the Singapore Ministry of Education under the Research Centers of Excellence initiative and by the Ministry of Education, Singapore through its Academic Research Fund Tier 2 (Project MOE2016‐T2‐1‐016). The coral Sr/Ca and δ18O data generated in this study are available in the supporting information Data Set S1 and are archived at the NOAA NCDC World Data Center for Paleoclimatology (https://www.ncdc.noaa.gov/paleo/study/27271). Other data and resources used in this study were sourced from the following sites: PDO index (http://research.jisao.washington.edu/pdo/PDO.latest); IPO index (https://www.esrl.noaa.gov/psd/data/timeseries/IPOTPI/ipotpi.hadisst2.data); NP index (https://www.esrl.noaa.gov/psd/data/correlation/np.data); PDO and North Pacific SST reconstructions (https://www.ncdc.noaa.gov/data‐access/paleoclimatology‐data); and MTM coherence and phase analysis MATLAB® code (https://www.mathworks.com/matlabcentral/fileexchange/22551‐multi‐taper‐coherence‐method‐with‐bias‐correction)

    Geological hazards of SW Natib Volcano, site of the Bataan Nuclear Power Plant, the Philippines

    No full text
    The SW sector of Mount Natib, a potentially active volcano in the Bataan volcanic arc in western Luzon, is the site of a mothballed nuclear power plant that members of the national legislature have proposed to activate. Detailed geological fieldwork was conducted to assess the capability of the volcano and to identify any volcanic hazards it might pose to the nuclear plant. The nearest eruptive centre is 5.5 km away from the plant. SW Natib Volcano is underlain by lava flows, lahar deposits and at least six pyroclastic density current (PDC) deposits, three directly underlying the nuclear reactor facility. A fault trending N30°E is aligned with the Lubao Fault, a capable fault NE of the volcanic edifice. Radon emissions at the traces of these faults are high and comparable to those at known active faults. An associated thrust fault at the nuclear site cuts through lahars up to the ground surface. The results presented here can be used for general hazard preparedness of local communities, and may assist the government to decide whether or not to recommission the nuclear power plant.</p
    corecore