89 research outputs found

    Cell Shortening and Calcium Homeostasis Analysis in Adult Cardiomyocytes via a New Software Tool

    Get PDF
    Intracellular calcium (Ca2+) is the central regulator of heart contractility. Indeed, it couples the electrical signal, which pervades the myocardium, with cardiomyocytes contraction. Moreover, alterations in calcium management are the main factors contributing to the mechanical and electrical dysfunction observed in failing hearts. So, simultaneous analysis of the contractile function and intracellular Ca2+ is indispensable to evaluate cardiomyocytes activity. Intracellular Ca2+ variations and fraction shortening are commonly studied with fluorescent Ca2+ indicator dyes associated with microscopy techniques. However, tracking and dealing with multiple files manually is time-consuming and error-prone and often requires expensive apparatus and software. Here, we announce a new, user-friendly image processing and analysis tool, based on ImageJ-Fiji/MATLABÂź software, to evaluate the major cardiomyocyte functional parameters. We succeeded in analyzing fractional cell shortening, Ca2+ transient amplitude, and the kinematics/dynamics parameters of mouse isolated adult cardiomyocytes. The proposed method can be applied to evaluate changes in the Ca2+ cycle and contractile behavior in genetically or pharmacologically induced disease models, in drug screening and other common applications to assess mammalian cardiomyocyte functions

    Gut microbiota composition and frailty in elderly patients with Chronic Kidney Disease

    Get PDF
    Background Frailty is common in older patients affected by chronic kidney disease (CKD). Since gut microbiota (gMB) may contribute to frailty, we explored possible associations between gMB and frailty in CKD. Methods We studied 64 CKD patients (stage 3b-4), categorized as frail (F, 38) and not frail (NF, 26) according to Fried criteria, and 15 controls (C), all older than 65 years. In CKD we assessed serum C-reactive protein, blood neutrophil/lymphocyte ratio, Malnutrition-inflammation Score (MIS); gMB was studied by denaturing gel gradient electrophoresis (DGGE), high-throughput sequencing (16S r-RNA gene), and quantitative real-time PCR (RT-PCR). Results No differences in alpha diversity between CKD and C and between F and NF patients emerged, but high-throughput sequencing showed significantly higher abundance of potentially noxious bacteria (Citrobacter, Coprobacillus, etc) and lower abundance of saccharolytic and butyrate-producing bacteria (Prevotella spp., Faecalibacterium prausnitzii, Roseburia spp.), in CKD respect to C. Mogibacteriaceae family and Oscillospira genus abundance was positively related to inflammatory indices in the whole CKD cohort, while that of Akkermansia, Ruminococcus and Eubacterium genera was negatively related. Compared with NF, in F there was a higher abundance of some bacteria (Mogibacteriacee, Coriobacteriacee, Eggerthella, etc), many of which have been described as more abundant in other diseases. Conclusions These results suggest that inflammation and frailty could be associated to gMB modifications in CKD

    Evaluation of leonardite as a feed additive on lipid metabolism and growth of weaned piglets

    Get PDF
    We evaluated the effects of leonardite supplementation, mainly composed of humic acids (HAs), as a functional feed additive in weaned piglets. One hundred and twenty piglets (Large Withe 7 Landrace) were weaned at 28\ub12 days, and randomly divided into two groups (6 pens per group, 10 piglets per pen). After one week of adaptation, for 40 days groups were fed a control diet (CTRL) and an HA enriched diet (0.25% of leonardite; HAG). Body weight (BW), average daily feed intake (ADFI), average daily gain (ADG), feed conversion ratio (FCR) were measured throughout the experimental period. On the last day of the trial four piglets per pen were randomly selected and the blood was collected to evaluate the serum metabolic profile and diamine oxidase content. Chemical analyses showed that leonardite was characterized by a high content of ash 23.27% (as-fed basis), polyphenolic content of 35.18\ub13.91 mg TAEq/g, and an antioxidant capacity of 73.31\ub18.22 \u3bcmol TroloxEq/g. The HAG group showed an increase in BW, ADG and ADFI (P<0.01) compared to the CTRL group during the experimental period. In terms of the serum metabolic profile, the HAG group showed a significant increase in total protein content (P<0.001), albumin (P<0.001), albumin/globulin ratio (P<0.01), phosphatase alkaline (P<0.01), calcium, phosphorus and magnesium (P<0.05) compared to the CTRL group. A modulation in the serum lipid profile was recorded. The HAG group showed a decrease in total triglycerides (P<0.05) with higher total cholesterol (P<0.05), however only high-density lipoprotein showed a significant increase (P<0.001) compared to the CTRL group. No significant differences in the amount of diamine oxidase were found between groups. In conclusion, leonardite inclusion in the diet at 0.25% was shown to have a positive effect on the serum lipid profile and animal growth. This thus suggests that leonardite can be considered as a new feed additive, which improves the health and performance of weaned piglets

    Bionic for training: Smart framework design for multisensor mechatronic platform validation

    Get PDF
    Home monitoring supports the continuous improvement of the therapy by sharing data with healthcare professionals. It is required when life-threatening events can still occur after hospital discharge such as neonatal apnea. However, multiple sources of external noise could affect data quality and/or increase the misdetection rate. In this study, we developed a mechatronic platform for sensor characterizations and a framework to manage data in the context of neonatal apnea. The platform can simulate the movement of the abdomen in different plausible newborn positions by merging data acquired simultaneously from three-axis accelerometers and infrared sensors. We simulated nine apnea conditions combining three different linear displacements and body postures in the presence of self-generated external noise, showing how it is possible to reduce errors near to zero in phenomena detection. Finally, the development of a smart 8Ws-based software and a customizable mobile application were proposed to facilitate data management and interpretation, classifying the alerts to guarantee the correct information sharing without specialized skills

    The Protective Effect of Ursodeoxycholic Acid in an in vitro model of the Human Fetal Heart occurs via Targeting Cardiac Fibroblasts

    Get PDF
    Bile acids are elevated in the blood of women with intrahepatic cholestasis of pregnancy (ICP) and this may lead to fetal arrhythmia, fetal hypoxia and potentially fetal death in utero. The bile acid taurocholic acid (TC) causes abnormal calcium dynamics and contraction in neonatal rat cardiomyocytes. Ursodeoxycholic acid (UDCA), a drug clinically used to treat ICP, prevents adverse effects of TC. During development, the fetus is in a state of relative hypoxia. Although this is essential for the development of the heart and vasculature, resident fibroblasts can transiently differentiate into myofibroblasts and form gap junctions with cardiomyocytes in vitro, resulting in cardiomyocyte depolarization. We expanded on previously published work using an in vitro hypoxia model to investigate the differentiation of human fetal fibroblasts into myofibroblasts.Recent evidence shows that potassium channels are involved in maintaining the membrane potential of ventricular fibroblasts and that ATP-dependent potassium (KATP) channel subunits are expressed in cultured fibroblasts. KATP channels are a valuable target as they are thought to have a cardioprotective role during ischaemic and hypoxic conditions. We investigated whether UDCA could modulate fibroblast membrane potential.We established the isolation and culture of human fetal cardiomyocytes and fibroblasts to investigate the effect of hypoxia, TC and UDCA on human fetal cardiac cells.UDCA hyperpolarized myofibroblasts and prevented TC-induced depolarisation, possibly through the activation of KATP channels that are expressed in cultured fibroblasts. Also, similar to the rat model, UDCA can counteract TC-induced calcium abnormalities in human fetal cultures of cardiomyocytes and myofibroblasts. Under normoxic conditions, we found a higher number of myofibroblasts in cultures derived from human fetal hearts compared to cells isolated from neonatal rat hearts, indicating a possible increased number of myofibroblasts in human fetal hearts. Hypoxia further increased the number of human fetal and rat neonatal myofibroblasts. However, chronically administered UDCA reduced the number of myofibroblasts and prevented hypoxia-induced depolarisation.In conclusion, our results show that the protective effect of UDCA involves both the reduction of fibroblast differentiation into myofibroblasts, and hyperpolarisation of myofibroblasts, most likely through the stimulation of potassium channels, i.e. KATP channels. This could be important in validating UDCA as an antifibrotic and antiarrhythmic drug for treatment of failing hearts and fetal arrhythmia

    CaMKII inhibition rectifies arrhythmic phenotype in a patient-specific model of catecholaminergic polymorphic ventricular tachycardia

    Get PDF
    Induced pluripotent stem cells (iPSC) offer a unique opportunity for developmental studies, disease modeling and regenerative medicine approaches in humans. The aim of our study was to create an in vitro 'patient-specific cell-based system' that could facilitate the screening of new therapeutic molecules for the treatment of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited form of fatal arrhythmia. Here, we report the development of a cardiac model of CPVT through the generation of iPSC from a CPVT patient carrying a heterozygous mutation in the cardiac ryanodine receptor gene (RyR2) and their subsequent differentiation into cardiomyocytes (CMs). Whole-cell patch-clamp and intracellular electrical recordings of spontaneously beating cells revealed the presence of delayed afterdepolarizations (DADs) in CPVT-CMs, both in resting conditions and after ÎČ-adrenergic stimulation, resembling the cardiac phenotype of the patients. Furthermore, treatment with KN-93 (2-[N-(2-hydroxyethyl)]-N-(4methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), an antiarrhythmic drug that inhibits Ca(2+)/calmodulin-dependent serine-threonine protein kinase II (CaMKII), drastically reduced the presence of DADs in CVPT-CMs, rescuing the arrhythmic phenotype induced by catecholaminergic stress. In addition, intracellular calcium transient measurements on 3D beating clusters by fast resolution optical mapping showed that CPVT clusters developed multiple calcium transients, whereas in the wild-type clusters, only single initiations were detected. Such instability is aggravated in the presence of isoproterenol and is attenuated by KN-93. As seen in our RyR2 knock-in CPVT mice, the antiarrhythmic effect of KN-93 is confirmed in these human iPSC-derived cardiac cells, supporting the role of this in vitro system for drug screening and optimization of clinical treatment strategies

    Understanding the heart-brain axis response in COVID-19 patients: A suggestive perspective for therapeutic development

    Get PDF
    In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches

    Scanning ion conductance microscopy: a convergent high-resolution technology for multi-parametric analysis of living cardiovascular cells

    Get PDF
    Cardiovascular diseases are complex pathologies that include alterations of various cell functions at the levels of intact tissue, single cells and subcellular signalling compartments. Conventional techniques to study these processes are extremely divergent and rely on a combination of individual methods, which usually provide spatially and temporally limited information on single parameters of interest. This review describes scanning ion conductance microscopy (SICM) as a novel versatile technique capable of simultaneously reporting various structural and functional parameters at nanometre resolution in living cardiovascular cells at the level of the whole tissue, single cells and at the subcellular level, to investigate the mechanisms of cardiovascular disease. SICM is a multimodal imaging technology that allows concurrent and dynamic analysis of membrane morphology and various functional parameters (cell volume, membrane potentials, cellular contraction, single ion-channel currents and some parameters of intracellular signalling) in intact living cardiovascular cells and tissues with nanometre resolution at different levels of organization (tissue, cellular and subcellular levels). Using this technique, we showed that at the tissue level, cell orientation in the inner and outer aortic arch distinguishes atheroprone and atheroprotected regions. At the cellular level, heart failure leads to a pronounced loss of T-tubules in cardiac myocytes accompanied by a reduction in Z-groove ratio. We also demonstrated the capability of SICM to measure the entire cell volume as an index of cellular hypertrophy. This method can be further combined with fluorescence to simultaneously measure cardiomyocyte contraction and intracellular calcium transients or to map subcellular localization of membrane receptors coupled to cyclic adenosine monophosphate production. The SICM pipette can be used for patch-clamp recordings of membrane potential and single channel currents. In conclusion, SICM provides a highly informative multimodal imaging platform for functional analysis of the mechanisms of cardiovascular diseases, which should facilitate identification of novel therapeutic strategies
    • 

    corecore