183 research outputs found

    The effect of complex dispersion and characteristic impedance on the gain of superconducting traveling-wave kinetic inductance parametric amplifiers

    Full text link
    Superconducting traveling-wave parametric amplifiers are a promising amplification technology suitable for applications in submillimeter astronomy. Their implementation relies on the use of Floquet transmission lines in order to create strong stopbands to suppress undesired harmonics. In the design process, amplitude equations are used to predict their gain, operation frequency, and bandwidth. However, usual amplitude equations do not take into account the real and imaginary parts of the dispersion and characteristic impedance that results from the use of Floquet lines, hindering reliable design. In order to overcome this limitation, we have used the multiple-scales method to include those effects. We demonstrate that complex dispersion and characteristic impedance have a stark effect on the transmission line's gain, even suppressing it completely in certain cases. The equations presented here can, thus, guide to a better design and understanding of the properties of this kind of amplifiers.Comment: 7 pages, 7 figures, submitted to IEEE Transactions on Applied Superconductivit

    Assessing the regional impacts of Mexico City emissions on air quality and chemistry

    Get PDF
    The impact of Mexico City (MCMA) emissions is examined by studying its effects on air quality, photochemistry, and on ozone production regimes by combining model products and aircraft observations from the MILAGRO experiment during March 2006. The modeled influence of MCMA emissions to enhancements in surface level NOx [NO subscript x], CO, and O3 [O subscript 3] concentrations (10–30% increase) are confined to distances <200 km, near surface. However, the extent of the influence is significantly larger at higher altitudes. Broader MCMA impacts (some 900 km Northeast of the city) are shown for specific outflow conditions in which enhanced ozone, NOy [NO subscript y], and MTBE mixing ratios over the Gulf of Mexico are linked to MCMA by source tagged tracers and sensitivity runs. This study shows that the "footprint" of MCMA on average is fairly local, with exception to reactive nitrogen, which can be transported long range in the form of PAN, acting as a reservoir and source of NOx [NO subscript x] with important regional ozone formation implications. The simulated effect of MCMA emissions of anthropogenic aerosol on photochemistry showed a maximum regional decrease of 40% in J[NO2→NO+O] [J [NO subscript 2 → NO + O]], and resulting in the reduction of ozone production by 5–10%. Observed ozone production efficiencies are evaluated as a function of distance from MCMA, and by modeled influence from MCMA. These tend to be much lower closer to MCMA, or in those points where modeled contribution from MCMA is large. This research shows that MCMA emissions do effect on regional air quality and photochemistry, both contributing large amounts of ozone and its precursors, but with caveat that aerosol concentrations hinder formation of ozone to its potential due to its reduction in photolysis rates.United States. National Aeronautics and Space AdministrationNational Science Foundation (U. S.) (ATM award 0528227

    A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign

    Get PDF
    The Sulfur Transport and dEposition Model (STEM) is applied to the analysis of observations obtained during the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B), conducted over the eastern Pacific Ocean during spring 2006. Predicted trace gas and aerosol distributions over the Pacific are presented and discussed in terms of transport and source region contributions. Trace species distributions show a strong west (high) to east (low) gradient, with the bulk of the pollutant transport over the central Pacific occurring between similar to 20 degrees N and 50 degrees N in the 2-6 km altitude range. These distributions are evaluated in the eastern Pacific by comparison with the NASA DC-8 and NSF/NCAR C-130 airborne measurements along with observations from the Mt. Bachelor (MBO) surface site. Thirty different meteorological, trace gas and aerosol parameters are compared. In general the meteorological fields are better predicted than gas phase species, which in turn are better predicted than aerosol quantities. PAN is found to be significantly overpredicted over the eastern Pacific, which is attributed to uncertainties in the chemical reaction mechanisms used in current atmospheric chemistry models in general and to the specifically high PAN production in the SAPRC-99 mechanism used in the regional model. A systematic underprediction of the elevated sulfate layer in the eastern Pacific observed by the C-130 is another issue that is identified and discussed. Results from source region tagged CO simulations are used to estimate how the different source regions around the Pacific contribute to the trace gas species distributions. During this period the largest contributions were from China and from fires in South/Southeast and North Asia. For the C-130 flights, which operated off the coast of the Northwest US, the regional CO contributions range as follows: China (35%), South/Southeast Asia fires (35%), North America anthropogenic (20%), and North Asia fires (10%). The transport of pollution into the western US is studied at MBO and a variety of events with elevated Asian dust, and periods with contributions from China and fires from both Asia and North America are discussed. The role of heterogeneous chemistry on the composition over the eastern Pacific is also studied. The impacts of heterogeneous reactions at specific times can be significant, increasing sulfate and nitrate aerosol production and reducing gas phase nitric acid levels appreciably (~50%)

    Impact of Mexico City Emissions on Regional Air Quality from MOZART-4 Simulations

    Get PDF
    An extensive set of measurements was made in and around Mexico City as part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) experiments in March 2006. Simulations with the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), a global chemical transport model, have been used to provide a regional context for these observations and assist in their interpretation. These MOZART-4 simulations reproduce the aircraft observations generally well, but some differences in the modeled volatile organic compounds (VOCs) from the observations result from incorrect VOC speciation assumed for the emission inventories. The different types of CO sources represented in the model have been tagged to quantify the contributions of regions outside Mexico, as well as the various emissions sectors within Mexico, to the regional air quality of Mexico. This analysis indicates open fires have some, but not a dominant, impact on the atmospheric composition in the region around Mexico City when averaged over the month. However, considerable variation in the fire contribution (2–15% of total CO) is seen during the month. The transport and photochemical aging of Mexico City emissions were studied using tags of CO emissions for each day, showing that typically the air downwind of Mexico City was a combination of many ages. Ozone production in MOZART-4 is shown to agree well with the net production rates from box model calculations constrained by the MILAGRO aircraft measurements. Ozone production efficiency derived from the ratio of Ox to NOz is higher in MOZART-4 than in the observations for moderately polluted air. OH reactivity determined from the MOZART-4 results shows the same increase in relative importance of oxygenated VOCs downwind of Mexico City as the reactivity inferred from the observations. The amount of ozone produced by emissions from Mexico City and surrounding areas has been quantified in the model by tracking NO emissions, showing little influence beyond Mexico\u27s borders, and also relatively minor influence from fire emissions on the monthly average tropospheric ozone column
    corecore