1,660 research outputs found

    Assessing zoo giraffe survivorship: Methodological aspects, historical improvement and a rapid demographic shift

    Get PDF
    Giraffe have been kept in zoos for a long time. They have traditionally been considered difficult to maintain due to various husbandry requirements, including their nature as intrinsic browsers. However, zoo animals are expected to achieve higher survivorship than free-ranging conspecifics due to protection against dangers that would be experienced in their natural habitat. Global zoo giraffe data was analysed for historical developments of juvenile and adult survivorship, assessing the data with various demographic measures and comparing it to that of populations from natural habitats. Additionally, zoo population structure was analysed, in particular with respect to two events that occurred in parallel in 2014—a recommendation to restrict the number of new offspring given by the European Endangered Species Programme (EEP) studbook coordinator and the culling of a designated ‘surplus’ giraffe at Copenhagen Zoo that attracted global media attention. Both juvenile and adult giraffe survivorship has increased over time, suggesting advances in giraffe husbandry. For juveniles, this process has been continuous, whereas for adults the major progress has been in the most recent cohort (from 2000 onwards), in parallel with the publication of various husbandry guidelines. Zoo giraffe survivorship is now generally above that observed in natural habitats. Simple survivorship analyses appear suitable to describe these developments. Since 2014, the global giraffe population has undergone a rapid demographic shift from a growing to an ageing population, indicating a drastic limitation of reproduction rather than a system where reproduction is allowed and selected animals are killed (and possibly fed to carnivores). Thus, giraffe are both a showcase example for the historical progress made in zoo animal husbandry due to efforts of the zoo community and serve as an example to discuss implications of different methods of zoo population management

    Counteracting incentive sensitization in severe alcohol dependence using deep brain stimulation of the nucleus accumbens: clinical and basic science aspects

    Full text link
    The ventral striatum / nucleus accumbens has been implicated in the craving for drugs and alcohol which is a major reason for relapse of addicted people. Craving might be induced by drug-related cues. This suggests that disruption of craving-related neural activity in the nucleus accumbens may significantly reduce craving in alcohol-dependent patients. Here we report on preliminary clinical and neurophysiological evidence in three male patients who were treated with high frequency deep brain stimulation of the nucleus accumbens bilaterally. All three had been alcohol dependent for many years, unable to abstain from drinking, and had experienced repeated relapses prior to the stimulation. After the operation, craving was greatly reduced and all three patients were able to abstain from drinking for extended periods of time. Immediately after the operation but prior to connection of the stimulation electrodes to the stimulator, local field potentials were obtained from the externalized cables in two patients while they performed cognitive tasks addressing action monitoring and incentive salience of drug related cues. LFPs in the action monitoring task provided further evidence for a role of the nucleus accumbens in goal-directed behaviors. Importantly, alcohol related cue stimuli in the incentive salience task modulated LFPs even though these cues were presented outside of the attentional focus. This implies that cue-related craving involves the nucleus accumbens and is highly automatic

    Gravitational Waves from Gravitational Collapse

    Get PDF
    Gravitational wave emission from the gravitational collapse of massive stars has been studied for more than three decades. Current state of the art numerical investigations of collapse include those that use progenitors with realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non--axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Focus: Implementing participation - Advancement of social services in analog and digital spaces

    Get PDF
    Digitale Informations- und Kommunikationstechnologien gewinnen als fester Bestandteil zunehmend Bedeutung in den alltĂ€glichen Lebenswelten einer wachsenden Zahl von Menschen. Ihre Entwicklung und selbstverstĂ€ndliche Nutzung schreiten in einem immer rasanteren Tempo voran; die vielfĂ€ltigen Anwendungsmöglichkeiten adressieren lĂ€ngst alle Lebensbereiche. WĂ€hrend der Digitalisierung von Kommunikationsprozessen zuweilen demokratisierende KrĂ€fte zugesprochen werden, scheint eine kritische Reflexion möglicher Potentiale und Auswirkungen digitaler Informations- und Kommunikationstechnologien auf Teilhabedynamiken in unterschiedlichen Lebensbereichen dringend erforderlich. Die Autorinnen und Autoren möchten mit dieser SI:SO-Schwerpunktausgabe einen Beitrag zu einer kritischen Reflexion digitaler Innovationen und ihrer Auswirkungen auf die zukĂŒnftige Gestaltung sozialer Dienste leisten. Mit der zweisprachigen Ausgabe ist zudem die Hoffnung verbunden, diesen Beitrag auch einem europĂ€ischen und weltweiten Publikum zugĂ€nglich zu machen.Digital information and communications technologies are becoming an increasingly important part in everyday life of a growing number of people. Their development and natural use are progressing even faster with a wide range of possible applications addressing all areas of life. While the digitization of communication processes is sometimes said to have democratizing forces, critical reflection on the potential and impact of digital information and communication technologies on participation dynamics in different areas of life seems urgently needed. The Authors would like to contribute to a critical reflection on digital innovations and their impact on the future design of social services. The bilingual edition further aims to make this contribution accessible to a European and global audience

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Dynamic Acoustic Control of Individual Optically Active Quantum Dot-like Emission Centers in Heterostructure Nanowires

    Get PDF
    We probe and control the optical properties of emission centers forming in radial het- erostructure GaAs-Al0.3Ga0.7As nanowires and show that these emitters, located in Al0.3Ga0.7As layers, can exhibit quantum-dot like characteristics. We employ a radio frequency surface acoustic wave to dynamically control their emission energy and occupancy state on a nanosec- ond timescale. In the spectral oscillations we identify unambiguous signatures arising from both the mechanical and electrical component of the surface acoustic wave. In addition, differ- ent emission lines of a single quantum dot exhibit pronounced anti-correlated intensity oscilla- tions during the acoustic cycle. These arise from a dynamically triggered carrier extraction out of the quantum dot to a continuum in the radial heterostructure. Using finite element modeling and Wentzel-Kramers-Brillouin theory we identify quantum tunneling as the underlying mech- anism. These simulation results quantitatively reproduce the observed switching and show that in our systems these quantum dots are spatially separated from the continuum by > 10.5 nm.Comment: This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Nano Letters, copyright \c{copyright} American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/nl404043

    Synthesis of marmycin A and investigation into its cellular activity

    Get PDF
    Anthracyclines such as doxorubicin are used extensively in the treatment of cancers. Anthraquinone-related angucyclines also exhibit antiproliferative properties and have been proposed to operate via similar mechanisms, including direct genome targeting. Here, we report the chemical synthesis of marmycin A and the study of its cellular activity. The aromatic core was constructed by means of a one-pot multistep reaction comprising a regioselective Diels-Alder cycloaddition, and the complex sugar backbone was introduced through a copper-catalysed Ullmann cross-coupling, followed by a challenging Friedel-Crafts cyclization. Remarkably, fluorescence microscopy revealed that marmycin A does not target the nucleus but instead accumulates in lysosomes, thereby promoting cell death independently of genome targeting. Furthermore, a synthetic dimer of marmycin A and the lysosome-targeting agent artesunate exhibited a synergistic activity against the invasive MDA-MB-231 cancer cell line. These findings shed light on the elusive pathways through which anthraquinone derivatives act in cells, pointing towards unanticipated biological and therapeutic applications
    • 

    corecore