749 research outputs found
It\u27s a Part of Who We Are New Jersey Superintendents\u27 Understandings of and Approaches to Culturally Responsive District-Level Leadership
A narrative study was used to examine the perspectives and experiences of Superintendents working towards educational justice by addressing the inequities found in schools. Data was collected through a series of semi-structured interviews representing a diverse participant pool of 23 superintendents and assistant superintendents who were currently employed in public school districts throughout the state of New Jersey. Using a primarily deductive coding scheme, the data was analyzed around the tenets of culturally responsive pedagogy and leadership.
Many participants described having impactful experiences as children that subsequently influenced their initial decision to become educators, as well as their leadership practices. Although the depth of their knowledge about culturally responsive practices varied, the approaches they described taking reflected a deeper understanding of culturally responsive leadership. The participants overwhelmingly agreed that the professional leadership standard for equity and cultural responsiveness was foundational to their work and what should be required of all superintendents, however their opinions in terms of its feasibility varied.
Their responses illustrate the need for leaders to receive adequate resources, training, and support to effectively implement complex standards such as this one. Consequently, it is imperative that culturally responsive practices are taught consistently across all state-approved teacher and leadership preparation programs. This study adds to literature on culturally responsive leadership by specifically considering the experiences, knowledge and approaches of superintendents working towards educational justice at district-level.
Keywords: Culturally responsive leadership, culturally responsive pedagogy, culturally relevant teaching, educational justice, equit
On Autonomous Robotic Cooperation Capabilities within Factory and Logistic Scenarios
The paper presents the development of a unified functional, algorithmic and Software (Sw) architecture, which can be adopted as a standard for controlling, at action level only, any robotic structure within a given wide class of them; even of reconfigurable type within the class. Such control architecture is therefore deemed very suitable for operating within factory and/or logistic, possibly reconfigurable, scenarios. Moreover, for the few cases of cooperative activities to be established between agents not allowed to be cable connected, an effective coordination policy, based on the exchange of a reduced information set, only regarding the cooperation goals, is developed; and relevant simulative and experimental trials are briefly outlined. Moreover, the advantage of having, in whatever operative condition, the possibility of commanding the involved structures only in terms of the ultimate goals of each action, also seems to be the right basis for having non-negligible improvements within their integration with automated action planning, and even learning, techniques
Learning symbolic representations of actions from human demonstrations
In this paper, a robot learning approach is pro- posed which integrates Visuospatial Skill Learning, Imitation Learning, and conventional planning methods. In our approach, the sensorimotor skills (i.e., actions) are learned through a learning from demonstration strategy. The sequence of per- formed actions is learned through demonstrations using Visu- ospatial Skill Learning. A standard action-level planner is used to represent a symbolic description of the skill, which allows the system to represent the skill in a discrete, symbolic form. The Visuospatial Skill Learning module identifies the underlying constraints of the task and extracts symbolic predicates (i.e., action preconditions and effects), thereby updating the planner representation while the skills are being learned. Therefore the planner maintains a generalized representation of each skill as a reusable action, which can be planned and performed inde- pendently during the learning phase. Preliminary experimental results on the iCub robot are presented
A semi-coherent analysis method to search for continuous gravitational waves emitted by ultra-light boson clouds around spinning black holes
As a consequence of superradiant instability induced in Kerr black holes,
ultra-light boson clouds can be a source of persistent gravitational waves,
potentially detectable by current and future gravitational-wave detectors.
These signals have been predicted to be nearly monochromatic, with a small
steady frequency increase (spin-up), but given the several assumptions and
simplifications done at theoretical level, it is wise to consider, from the
data analysis point of view, a broader class of gravitational signals in which
the phase (or the frequency) slightly wander in time. Also other types of
sources, e.g. neutron stars in which a torque balance equilibrium exists
between matter accretion and emission of persistent gravitational waves, would
fit in this category. In this paper we present a robust and computationally
cheap analysis pipeline devoted to the search of such kind of signals. We
provide a full characterization of the method, through both a theoretical
sensitivity estimation and through the analysis of syntethic data in which
simulated signals have been injected. The search setup for both all-sky
searches and higher sensitivity directed searches is discussed.Comment: 13 pages, 13 figure
Active haptic perception in robots: a review
In the past few years a new scenario for robot-based applications has emerged. Service
and mobile robots have opened new market niches. Also, new frameworks for shop-floor
robot applications have been developed. In all these contexts, robots are requested to
perform tasks within open-ended conditions, possibly dynamically varying. These new
requirements ask also for a change of paradigm in the design of robots: on-line and safe
feedback motion control becomes the core of modern robot systems. Future robots will
learn autonomously, interact safely and possess qualities like self-maintenance. Attaining
these features would have been relatively easy if a complete model of the environment
was available, and if the robot actuators could execute motion commands perfectly
relative to this model. Unfortunately, a complete world model is not available and robots
have to plan and execute the tasks in the presence of environmental uncertainties which
makes sensing an important component of new generation robots. For this reason,
today\u2019s new generation robots are equipped with more and more sensing components,
and consequently they are ready to actively deal with the high complexity of the real
world. Complex sensorimotor tasks such as exploration require coordination between the
motor system and the sensory feedback. For robot control purposes, sensory feedback
should be adequately organized in terms of relevant features and the associated data
representation. In this paper, we propose an overall functional picture linking sensing
to action in closed-loop sensorimotor control of robots for touch (hands, fingers). Basic
qualities of haptic perception in humans inspire the models and categories comprising the
proposed classification. The objective is to provide a reasoned, principled perspective on
the connections between different taxonomies used in the Robotics and human haptic
literature. The specific case of active exploration is chosen to ground interesting use
cases. Two reasons motivate this choice. First, in the literature on haptics, exploration has
been treated only to a limited extent compared to grasping and manipulation. Second,
exploration involves specific robot behaviors that exploit distributed and heterogeneous
sensory data
A non-conserved amino acid variant regulates differential signalling between human and mouse CD28
CD28 superagonistic antibodies (CD28SAb) can preferentially activate and expand immunosuppressive
regulatory T cells (Treg) in mice. However, pre-clinical trials assessing
CD28SAbs for the therapy of autoimmune diseases reveal severe systemic inflammatory
response syndrome in humans, thereby implying the existence of distinct signalling abilities
between human and mouse CD28. Here, we show that a single amino acid variant within the
C-terminal proline-rich motif of human and mouse CD28 (P212 in human vs. A210 in mouse)
regulates CD28-induced NF-κB activation and pro-inflammatory cytokine gene expression.
Moreover, this Y209APP212 sequence in humans is crucial for the association of CD28 with
the Nck adaptor protein for actin cytoskeleton reorganisation events necessary for CD28
autonomous signalling. This study thus unveils different outcomes between human and
mouse CD28 signalling to underscore the importance of species difference when transferring
results from preclinical models to the bedside
A method to search for long duration gravitational wave transients from isolated neutron stars using the generalized FrequencyHough
We describe a method to detect gravitational waves lasting
emitted by young, isolated neutron stars, such as those that could form after a
supernova or a binary neutron star merger, using advanced LIGO/Virgo data. The
method is based on a generalization of the FrequencyHough (FH), a pipeline that
performs hierarchical searches for continuous gravitational waves by mapping
points in the time/frequency plane of the detector to lines in the
frequency/spindown plane of the source. We show that signals whose spindowns
are related to their frequencies by a power law can be transformed to
coordinates where the behavior of these signals is always linear, and can
therefore be searched for by the FH. We estimate the sensitivity of our search
across different braking indices, and describe the portion of the parameter
space we could explore in a search using varying fast Fourier Transform (FFT)
lengths.Comment: 15 figure
Knowledge representation for culturally competent personal robots: requirements, design principles, implementation, and assessment
Culture, intended as the set of beliefs, values, ideas, language, norms and customs which compose a person’s life, is an essential element to know by any robot for personal assistance. Culture, intended as that person’s background, can be an invaluable source of information to drive and speed up the process of discovering and adapting to the person’s habits, preferences and needs. This article discusses the requirements posed by cultural competence on the knowledge management system of a robot. We propose a framework for cultural knowledge representation that relies on (i) a three layer ontology for storing concepts of relevance, culture specific information and statistics, person-specific information and preferences; (ii) an algorithm for the acquisition of person-specific knowledge, which uses culture specific knowledge to drive the search; (iii) a Bayesian Network for speeding up the adaptation to the person by propagating the effects of acquiring one specific information onto interconnected concepts. We have conducted a preliminary evaluation of the framework involving 159 Italian and German volunteers and considering 122 among habits, attitudes and social norms
Laboratory Diagnosis of Intrathecal Synthesis of Immunoglobulins: A Review about the Contribution of OCBs and K-index
the diagnosis of MS relies on a combination of imaging, clinical examinations, and biological analyses, including blood and cerebrospinal fluid (CSF) assessments. G-Oligoclonal bands (OCBs) are considered a "gold standard" for MS diagnosis due to their high sensitivity and specificity. recent advancements have involved the introduced of kappa free light chain (k-FLC) assay into cerebrospinal fluid (CSF) and serum (S), along with the albumin quotient, leading to the development of a novel biomarker known as the "K-index" or "k-FLC index". the use of the K-index has been recommended to decrease costs, increase laboratory efficiency, and to skip potential subjective operator-dependent risk that could happen during the identification of OCBs profiles. this review aims to provide a comprehensive overview and analysis of recent scientific articles, focusing on updated methods for MS diagnosis with an emphasis on the utility of the K-index. numerous studies indicate that the K-index demonstrates high sensitivity and specificity, often comparable to or surpassing the diagnostic accuracy of OCBs evaluation. the integration of the measure of the K-index with OCBs assessment emerges as a more precise method for MS diagnosis. this combined approach not only enhances diagnostic accuracy, but also offers a more efficient and cost-effective alternative
Antiproliferative activity of yatein isolated from Austrocedrus chilensis against murine myeloma cells: Cytological studies and chemical investigations
Context: Fitzroya cupressoides (Molina) I. M. Johnst. and Austrocedrus chilensis (D. Don) Pic.Serm. & Bizzarri are two Chilean Cupressaceae that are naturally resistant to biodegradation. Secondary metabolites from these species display a variety of biological activities. Objective: To evaluate the antiproliferative activity of two lignans, a diterpene and a flavonol isolated from A. chilensis and F. cupressoides, to elucidate their cytological effects on P3X murine myeloma cells. Materials and methods: The antiproliferative activity of yatein, isotaxiresinol, ferruginol, and isorhamnetin was evaluated in vitro using the MTT assay. The effect of yatein at the cellular level, due to its high antiproliferative activity was evaluated. P3X cells treated for 24 h with 12.5 and 25 \u3bcg/mL of yatein were also examined at the cytological level using immunofluorescence and scanning and transmission electron microscopy. Results: Yatein, a lignan isolated from A. chilensis, potentially inhibited P3X murine myeloma cell proliferation, resulting in approximately 75% cell death in response to a 25 \u3bcg/mL treatment with the lignan. P3X cells lost membrane integrity at the nuclear and cytoplasmic levels, including organelles, in response to yatein treatment (12.5 \u3bcg/mL), and we observed changes in the cytoplasmic organization and distribution of microtubules. The other compounds tested had low activity. Discussion and conclusions: Yatein is a lignan precursor of podophyllotoxin, a key agent in anticancer drugs. Due to its structural similarities to podophyllotoxin, yatein could have similar cytoplasmic target(s), such as the microtubular apparatus. These findings suggest that yatein may be of potential pharmacological interest and warrants further investigation in human cell lines
- …