604 research outputs found

    Adapted Compressed Sensing: A Game Worth Playing

    Get PDF
    Despite the universal nature of the compressed sensing mechanism, additional information on the class of sparse signals to acquire allows adjustments that yield substantial improvements. In facts, proper exploitation of these priors allows to significantly increase compression for a given reconstruction quality. Since one of the most promising scopes of application of compressed sensing is that of IoT devices subject to extremely low resource constraint, adaptation is especially interesting when it can cope with hardware-related constraint allowing low complexity implementations. We here review and compare many algorithmic adaptation policies that focus either on the encoding part or on the recovery part of compressed sensing. We also review other more hardware-oriented adaptation techniques that are actually able to make the difference when coming to real-world implementations. In all cases, adaptation proves to be a tool that should be mastered in practical applications to unleash the full potential of compressed sensing

    An architecture for ultra-low-voltage ultra-low-power compressed sensing-based acquisition systems

    Get PDF
    Compressed Sensing (CS) has been addressed as a paradigm capable of lowering energy requirements in acquisition systems. Furthermore, the capability of simultaneously acquiring and compressing an input signal makes this paradigm perfectly suitable for low-power devices. However, the need for analog hardware blocks makes the adoption of most of standard solutions proposed so far in the literature problematic when an aggressive voltage and energy scaling is considered, as in the case of ultra-low-power IoT devices that need to be battery-powered or energy harvesting-powered. Here, we investigate a recently proposed architecture that, due to the lack of any analog block (except for the comparator required in the following A/D stage) is compatible with the aggressive voltage scaling required by IoT devices. Feasibility and expected performance of this architecture are investigated according to the most recent state-of-the-art literature

    Subspace Energy Monitoring for Anomaly Detection @Sensor or @Edge

    Get PDF
    The amount of data generated by distributed monitoring systems that can be exploited for anomaly detection, along with real time, bandwidth, and scalability requirements leads to the abandonment of centralized approaches in favor of processing closer to where data are generated. This increases the interest in algorithms coping with the limited computational resources of gateways or sensor nodes. We here propose two dual and lightweight methods for anomaly detection based on generalized spectral analysis. We monitor the signal energy laying along with the principal and anti-principal signal subspaces, and call for an anomaly when such energy changes significantly with respect to normal conditions. A streaming approach for the online estimation of the needed subspaces is also proposed. The methods are tested by applying them to synthetic data and real-world sensor readings. The synthetic setting is used for design space exploration and highlights the tradeoff between accuracy and computational cost. The real-world example deals with structural health monitoring and shows how, despite the extremely low computations costs, our methods are able to detect permanent and transient anomalies that would classically be detected by full spectral analysis

    A Deep Learning Method for Optimal Undersampling Patterns and Image Recovery for MRI Exploiting Losses and Projections

    Get PDF
    Compressed Sensing was recently proposed to reduce the long acquisition time of Magnetic Resonance Imaging by undersampling the signal frequency content and then algorithmically reconstructing the original image. We propose a way to significantly improve the above method by exploiting a deep neural network to tackle both problems of frequency sub-sampling and image reconstruction simultaneously, thanks to the introduction of a new loss function to drive the training and the addition of a post-processing non-neural stage. Furthermore, we highlight how some of the quantities along the processing chain can be used as a proxy of the quality of the recovered image, thus allowing a self-assessment of the whole technique. All improvements hinge on the possibility of identifying constraints to which the final image must obey and suitably enforce them. The effectiveness of our approach is tested on real-world MRI acquisitions from the fastMRI public database and achieves an appreciable improvement in Peak Signal-to-Noise Ratio with respect to the original CS-based proposal with speed-up factors 4 and 8

    Preliminary microbiological and chemical characterisation of edible goat's rennet, a unique product of Sardinian food tradition

    Get PDF
    The edible goat rennet (EGR) namely Caggiu de crabittu, is a traditional Sardinian foodstuff deriving from the stomach of a weaned (breastfed) kid whose edible part is represented by the milk coagulated inside the abomasum that, before consumption, is subjected to a suitable ripening time. In this study, a preliminary investigation into the microbiological characteristics and physicochemical parameters of different EGRs manufactured by distinct Sardinian farms was conducted. Results showed that the edible goat rennet was free of spoilage/pathogenic bacteria and was characterised by a significant presence (6–7 log cfu/g) of mesophilic lactic acid bacteria (i.e. Lactococcus lactis, Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus brevis) and Enterococci. Oleic, linolenic, palmitic and myristic acids were the most abundant free fatty acids (FFA) in all samples, while both caprylic and butyric acid contents resulted the lowest. Long chain FFA (≥C18:0) represented about 50% of total FFA. Among the polyunsaturated FFA, high content of linoleic (C18:2n-6) and alpha-linolenic (C18:3n-3) acids have been detected. In this study, EGR is shown to be microbiologically safe, with a high number of live lactic bacteria and an FFA content that is attractive from a nutritional point of view.Highlights Edible goat's rennet (EGR) resulted microbiologically safe with a high number of viable mesophilic lactic acid bacteria. In the EGR an intense process of lipolysis has occurred. EGR had a high content of linolenic acid

    Training Binary Layers by Self-Shrinking of Sigmoid Slope: Application to Fast MRI Acquisition

    Get PDF
    Deep Neural Networks (DNN) have become popular and widespread because they combine computational power and flexibility, but they may present critical hyper-parameters that need to be tuned before the model can be trained. Recently, the use of trainable binary masks in the field of Magnetic Resonance Imaging (MRI) acquisition brought new state-of-the-art results, but with the disadvantage of introducing a bulky hyper-parameter, which tuning is usually time-consuming. We present a novel callback-based method that is applied during training and turns the tuning problem into a triviality, also bringing non-negligible performance improvements. We test our method on the fastMRI dataset

    Low-power fixed-point compressed sensing decoder with support oracle

    Get PDF
    Approaches for reconstructing signals encoded with Compressed Sensing (CS) techniques, and based on Deep Neural Networks (DNNs) are receiving increasing interest in the literature. In a recent work, a new DNN-based method named Trained CS with Support Oracle (TCSSO) is introduced, relying the signal reconstruction on the two separate tasks of support identification and measurements decoding. The aim of this paper is to improve the TCSSO framework by considering actual implementations using a finite-precision hardware. Solutions with low memory footprint and low computation requirements by employing fixed-point notation and by reducing the number of bits employed are considered. Results using synthetic electrocardiogram (ECG) signals as a case study show that this approach, even when used in a constrained-resources scenario, still outperform current state-of-art CS approaches

    Streaming Algorithms for Subspace Analysis: Comparative Review and Implementation on IoT Devices

    Get PDF
    Subspace analysis is a widely used technique for coping with high-dimensional data and is becoming a fundamental step in the early treatment of many signal processing tasks. However, traditional subspace analysis often requires a large amount of memory and computational resources, as it is equivalent to eigenspace determination. To address this issue, specialized streaming algorithms have been developed, allowing subspace analysis to be run on low-power devices such as sensors or edge devices. Here, we present a classification and a comparison of these methods by providing a consistent description and highlighting their features and similarities. We also evaluate their performance in the task of subspace identification with a focus on computational complexity and memory footprint for different signal dimensions. Additionally, we test the implementation of these algorithms on common hardware platforms typically employed for sensors and edge devices

    Deep Neural Oracles for Short-Window Optimized Compressed Sensing of Biosignals

    Get PDF
    The recovery of sparse signals given their linear mapping on lower-dimensional spaces can be partitioned into a support estimation phase and a coefficient estimation phase. We propose to estimate the support with an oracle based on a deep neural network trained jointly with the linear mapping at the encoder. The divination of the oracle is then used to estimate the coefficients by pseudo-inversion. This architecture allows the definition of an encoding-decoding scheme with state-of-the-art recovery capabilities when applied to biological signals such as ECG and EEG, thus allowing extremely low-complex encoders. As an additional feature, oracle-based recovery is able to self-assess, by indicating with remarkable accuracy chunks of signals that may have been reconstructed with a non-satisfactory quality. This self-assessment capability is unique in the CS literature and paves the way for further improvements depending on the requirements of the specific application. As an example, our scheme is able to satisfyingly compress by a factor of 2.67 an ECG or EEG signal with a complexity equivalent to only 24 signed sums per processed sample

    NLRP3 Inflammasome From Bench to Bedside: New Perspectives for Triple Negative Breast Cancer

    Get PDF
    The tumor microenvironment (TME) is crucial in cancer onset, progression and response to treatment. It is characterized by an intricate interaction of immune cells and cytokines involved in tumor development. Among these, inflammasomes are oligomeric molecular platforms and play a key role in inflammatory response and immunity. Inflammasome activation is initiated upon triggering of pattern recognition receptors (Toll-like receptors, NOD-like receptors, and Absent in melanoma like receptors), on the surface of immune cells with the recruitment of caspase-1 by an adaptor apoptosis-associated speck-like protein. This structure leads to the activation of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and participates in different biological processes exerting its effects. To date, the Nod–Like Receptor Protein 3 (NLRP3) inflammasome has been well studied and its involvement has been established in different cancer diseases. In this review, we discuss the structure, biology and mechanisms of inflammasomes with a special focus on the specific role of NLRP3 in breast cancer (BC) and in the sub-group of triple negative BC. The NLRP3 inflammasome and its down-stream pathways could be considered novel potential tumor biomarkers and could open new frontiers in BC treatment
    • …
    corecore