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Abstract—Deep Neural Networks (DNN) have become popular
and widespread because they combine computational power and
flexibility, but they may present critical hyper-parameters that
need to be tuned before the model can be trained. Recently,
the use of trainable binary masks in the field of Magnetic
Resonance Imaging (MRI) acquisition brought new state-of-the-
art results, but with the disadvantage of introducing a bulky
hyper-parameter, which tuning is usually time-consuming. We
present a novel callback-based method that is applied during
training and turns the tuning problem into a triviality, also
bringing non-negligible performance improvements. We test our
method on the fastMRI dataset.

Index Terms—Binary Layer, DNN, Sigmoid, Callback, Tuning,
MRI reconstruction

I. INTRODUCTION

Deep Neural Networks (DNN) have shown a great adapt-
ability power and for the last decade specialists have been
extending their use to all the imaginable engineering fields.
As a consequence, the design of custom structures in DNN is
becoming more and more a common practice. For example, the
introduction of binary trainable masks [1], [2] and the use of
non-uniform trainable quantizers [3] are all based on peculiar
and unique layers.

All DNN share the same learning principles, first a batch of
input samples is used to produce a batch of output samples,
that is compared with the corresponding reference labels to
produce an average loss (or error). Second, the gradients of
the loss are backpropagated, and the network parameters are
updated in the direction where the loss locally minimum. This
step characterizes the method named backpropagation (BP).

In general, to obtain meaningful changes inside the model,
BP should propagate neither non-null gradients, nor extremely
large gradients, e.g., a gradient close to zero would bring
negligible contributions and an exploding one would probably
introduce baneful and unstable changes. The two configura-
tions are known as the vanishing gradient problem and the
exploding gradient problem [4]. To deal with them, the user
is usually asked to tune the learning rate, but when they
intrinsically derive from the structure of the model, learning
rate tuning is not enough. For example, vanishing/exploding
gradient problems reside in DNN built with recurrent layers

or LSTM [5], and knowing how to avoid them is a skill one
yearns for.

Custom layers must go through a careful design to prevent
any arising gradient-related problems. In the design of a
trainable binary mask [1], [2], it is necessary to substitute
the hard threshold responsible for the binary values with a
soft one, where the first occludes the gradient flow (vanishing
gradient), the latter grants a swift BP. This solution introduces
a hyper-parameter that controls the degree of binarization of
the mask. We can imagine BP as a tap whose water flow
is controlled by a knob. In [1] the knob is moved from
shut to open, while here we try to answer at the question
“how much water should flow?”. The answer we propose
is a gradually decreasing flow training strategy named Self-
Shrinking of Sigmoid Slope, that is like a knob that is slowly
turned close.

The proposed method is adopted in the design of a Magnetic
Resonance Imaging (MRI) acquisition system. MRI is a well
known non-invasive medical technology used to acquire high-
resolution images of the inner structures of the human body.
The main disadvantage of MRI is the long sensing time,
which takes place in a claustrophobic space. The reduction
of the MRI scan duration is one of the most investigated key
objective to achieve, and literature provides a rich collection
of attempts [6]–[10]. Considering [1] a baseline framework,
our work, similarly to [11], [12], contributes in advancing
this research direction. In particular, we introduce an efficient
and general purpose binary mask training strategy, that does
not simply remove the need of a hyper-parameter tuning, but
brings an overall benefit in term of performance.

The rest of the paper is organized as follows. Section II
presents the adopted case study with a DNN embedding a
custom layer generating a binary mask, Section III reports the
achieved results in the processing of grayscale MRI images
and Section IV contains the conclusions.

II. CUSTOM LAYER GENERATING BINARY MASK

We refer to the original work presented in [1] as the main
case study. This method, named Learning-based Optimization
of the Under-sampling PattErn (LOUPE), accelerates the ac-
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quisition of an MRI machine by simulating the sensing and the
processing of every scan with a novel DNN-based solution.

An MRI system produces a 2D matrix in the spatial do-
main for each body scan. This is achieved by sensing the
frequencies every human body emits when hit by a controlled
magnetic field. A traditional MRI system acquires the whole
set of frequency components and computes the inverse Fourier
Transform to obtain the clinical image. The general idea
behind LOUPE (and behind several similar solutions proposed
in literature) is to sample only a subset of the entire set of
frequency components composing each scan; the direct con-
sequence of the lower sampling rate is the desired acquisition
speed-up.

With more details, LOUPE wants to return a high-resolution
N ×N image, only acquiring r ×N ×N of its frequencies,
where R = 1/r > 1 is called the acceleration rate. To
reach this goal, the whole structure to be trained includes two
subsystems: Encoder and Decoder. The first simulates the sub-
sampling acquisition in the frequency domain by multiplying
the matrix containing the full set of acquirable frequencies
with a binary mask Mγ ∈ {0, 1}N×N that selects which
frequency components will be physically acquired or discarded
at inference time. Ones and zeros in Mγ are placed during
the training phase and depend on a set of trainable parameters
γ ∈ RN×N . The second part, the Decoder, is a more
conventional DNN structure processing the Encoder output
and attempting to restore a full resolution image, erasing the
artifacts introduced by the undersampling process.

The overall network, composed by both Encoder and De-
coder, works as an Autoencoder [13] Decθ

(
Encγ(·)

)
that, at

training time, uses full resolution scans as input and tries to
reproduce them as output. The encoder takes a single scan
x ∈ [0, 1]N×N and produces the undersampled frequency
content y ∈ CN×N (real and imaginary parts) by applying
the binary mask in the frequency domain, i.e.,

y = Encγ(x) =Mγ ◦ F(x) (1)

where F(·) and F−1 (·) stand for direct and inverse 2D Fourier
transform, and ◦ is the Hadamard element-wise product.

The decoder Decθ(y) recovers the input scan in two
stages: i) the first computes |F−1 (y) | and yields a first
approximation/reconstruction; ii) the second stage removes the
artifacts by applying pixel-wise adjustments computed by a
sub-network Dθ [1], [2] that is a function of the trainable
parameters θ.

x̂ = Decθ(y) = |F−1 (y) |+Dθ(F−1 (y)) (2)

The adopted sub-network is a slight modification of the U-net
architecture [14].

Once the training is over, we only keep the mask Mγ

to guide the MRI through the acquisition and the decoder
Decθ(y) to restore the undersampled images.

At inference time, binary masks are obtained by element-
wisely thresholding a sub-output of the sub-network generat-
ing Mγ . Inconveniently, the threshold function introduces a
vanishing gradient bottleneck that would hamper the learning
of γ if used for training, since it makes the gradient of the
loss function always null.

To overcome this critical aspect, the authors of [1] create
a specific mask generator sub-network for training Mγ , and
substitute the threshold function with a sigmoid function σs(·)
that depends on a scaling factor s, called slope.

σs (p) =
1

1 + exp (−s p) (3)

where σs(p) converges to a threshold function for s→∞.
The sub-network generating the mask entries is here de-

tailed. The undersampling pattern controlling R is obtained
starting from the so called probability mask S(γ) = σt(γ)

where each matrix entry represents the probability of that
element to be included in Mγ . Here t is not critical since
σt(·) only serves the purpose of having every element of γ
mapped in the [0, 1]. A typical employed value is t = 5.
S(γ) works as a probability mask since, during the training,

single matrices Mγ are obtained by matching S(γ) with ma-
trices U containing instances of random variables uniformly
distributed in [0, 1], i.e.,

Mγ = σs (S(γ)−U) (4)

Here, s is critical since it is the parameter that controls the
final degree of resemblance of Mγ with a binary mask.

The inverse of the acceleration rate r is the average proba-
bility of acquiring every sample, i.e., the average of S(γ).
LOUPE leverages this property by introducing a rescaling
layer in the encoder sub-network that imposes r = R−1 as the
average of S(γ). As sketched in Fig. 1, the rescaling layer is
placed immediately after the layer producing S(γ), such that:

P r(S(γ)) =

{
r

〈S(γ)〉S(γ) if 〈S(γ)〉 ≥ r
1− 1−r

1−〈S(γ)〉 (1− S(γ)) if 〈S(γ)〉 < r
(5)

where 〈·〉 is an operator computing the average of the entries
of the matrix given as argument. Note that P r(S(γ)) ∈
[0, 1]N×N is still a probability mask but now has 〈P r(γ)〉 = r.
This trick gives the user control over R. To complete the
process, the output of the rescaling layer contributes to the
generation of Mγ as before

Mγ = σs (P r(S(γ))−U) (6)

A. On the importance of s, the Self-Shrinking of Sigmoid Slope

Although Mγ is obtained by hard thresholding P r(S(γ))

at inference time, the sigmoid function in (6) characterizing
the training inevitably leads to the introduction of the hyper-
parameter s, which can severely limit the final performance
of the model if poorly chosen. In particular, one can fall into
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Fig. 1. LOUPE encoder sub network as in [1].

two error classes depending on whether s is too low or too
high, respectively: i) at training time, many mask entries are
far from either 0 or 1, so that hard thresholding significantly
changes the mask characterization at inference time; ii) at
training time, the sigmoid function risks meeting a vanishing
gradient problem. It is evident how the tuning of s may require
several attempts, resulting in a long procedure. Let us remark
that s cannot be a trainable parameter. In fact, if it was, the
net would promote s = 0, that corresponds to the degenerate
case where the Mγ is filled with 0.5 only, i.e., undersampling
is not performed.

In this work, we propose a method to reduce the burden
of slope-like parameters tuning via the use of a callback
function. Even if we only test our approach within the LOUPE
framework, it should be valid for a wide range of problems,
e.g., the works in [15], [16].

Confining our analysis within the DNN world, a callback
function is a function that affects the training only during
certain training time windows, e.g., at the end of an epoch.
Callback functions act in parallel with backpropagation, ex-
amples are: i) Early Stop (ES), that checks whether the loss is
descending at the end of each epoch, and stops the training if
the loss has not been lowering for a given consecutive number
of epochs; ii) Reduce Learning Rate on Plateau (RLRP),
which, similarly to ES, acts only after a certain amount of
epochs during which the model does not improve, and reduces
the learning rate; iii) Model Checkpoint (MC), which saves
the weights of the model, updating them every time the loss
gets smaller. The number of epochs after which the callback
activates is named patience.

We propose and implement a callback that automatically
tunes the slope of the sigmoid by gradually increasing s.
In particular, every time a patience number of epoch passes
without a loss reduction, s is raised. The procedue is repeated
until a maximum admitted value value is reached. Once the
training is over, thanks to MC, only the weights giving the
lowest loss have been saved, and the model with the optimal
auto-tuned s is returned. We call our callback Self-Shrinking
of Sigmoid Slope (4S). Its parameters are: the patience p and
a factor m used to raise the slope every time the callback
is triggered, such that si+1 = msi. We observe that these
degrees of freedom are not critical, and one can simply set a
broad enough set of s by using p = 40 and m = 1.5.

4S has a real impact for at least two reasons: i) the training
process gradually fossilizes Mγ , until s is high enough to

1

0 0.5 1

100

102

104 R = 4

mask value

H
is
to
g
ra
m

0 0.5 1

R = 8

mask value

s = 20 s = 200 s = 2000
s = 5000 s = 10000 s = 50000
4S

Fig. 2. Histograms for R = 4 and R = 8 of LOUPE trained with several
s values and 4S, that returns two models with s = 18800 and s = 1675
respectively for R = 4 and R = 8.
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Fig. 3. PSNR for R = 4 (circles) and R = 8 (squares), trained with several
fixed s values (blue points) and 4S (yellow points). 4S models return s =
18800 and s = 1675 respectively for R = 4 and R = 8.

make the mask almost binary, meaning only the decoder is
still training hence reducing the performance drop due to the
mask binarization; ii) it avoids the manual tuning of s.

III. NUMERICAL EVIDENCES

To assess the quality of our strategy, also following the
structure of [1], we use a subset of the publicly available
dataset fastMRI [17], already adopted in international com-
petitions such as [18]. The subset of the original dataset
consists of 2269 normalized grayscale MRI images with shape
320 × 320 split into 1895 training images (83.5%), 188
validation images (8.3%) and 186 test images (8.2%). Scans
are naturally grouped in volumes (every volume represents a
different knee), each comprising around 40 slices. Every slice
is normalized with the highest magnitude value of its volume.

Coherently with the model we propose, the undersampling
mask Mγ is not provided by the user but is entirely learnt
by the model. All the inference tests adopt a deterministic
binarized version of the masks.

We train our models on an Nvidia V100 using Adam
optimizer, an initial learning rate of 0.01, and a batch size
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R = 8

(a) s = 20 (b) s = 200 (c) s = 2000 (d) s = 50000 (e) 4S (s = 1675)

R = 4

(f) s = 20 (g) s = 200 (h) s = 2000 (i) s = 50000 (j) 4S (s = 18800)

Fig. 4. Probability masks for R = 8 (a, b, c, d) and R = 4 (f, g, h, i), for cases where s is a hyperparameter (fixed s = {20, 200, 2000, 50000}) and for
4S (e, j) (s is automatically determined at training time). Without 4S, low values of s produce mask values far from either 0 or 1, so that the thresholding
operation at inference time becomes critical. High values of s hamper the training, and produce poor masks.

of 16. To compare the quality of every reconstructed image,
we use the Peak Signal-to-Noise Ratio (PSNR) defined as:

PSNR = −10 log10 (MSE) (7)

where MSE is the mean square error between x and the
decoder output x̂.

In this section, we compare models trained with and without
4S. The training of the latter uses RLRP, ES, and MC. The
former are trained using 4S, ES, and MC in a first training
round, followed by a second round where RLRP replaces 4S.
This strategy has the advantage of letting the model largely
explore many s configurations.

To make clear how 4S acts, Fig. 2 shows the his-
tograms for the trained masks entries as in (6) (be-
fore hard thresholding) without 4S, considering s =

{20, 200, 2000, 5000, 10000, 50000}, and with 4S. In particu-
lar, we randomly draw 1000 masks Mγ for each configuration
and show their average values distribution. Results regard
both R = 4 and R = 8. As expected, high s values return
masks containing almost binary values while low s values push
several mask entries far from either 0 or 1.

4S shows excellent preservation of the mask binary struc-
ture, returning final s equal to 18800 and 1675 for R equal
to 4 and 8, respectively. This aspect, coupled with the model
performance in terms of PSNR (results displayed in Fig. 3),
further evidences the superiority of our strategy and the
importance of the choice of s.

Finally, in Fig. 4 we give a visual representation of the
masks taken from models trained using R = 4, 8, with
s = 20, 200, 2000, 50000 when using 4S. In accordance with
our premises, the mask associated with s = 20 contains many
non-binary values that spoil its binary structure. Conversely,
the mask associated with s = 50000 maintains a nice bi-
nary configuration but clearly loses the signal adaptation. 4S
collects the advantages of both the described configurations,
donating a strong binary characterization and structure to the
mask.

IV. CONCLUSIONS

We present a callback-based novel method to turn the
problem of tuning a class of hyper-parameters inside a DNN
into a triviality. In particular, we show our method works
within the LOUPE framework, which implements a mask
generator whose final output critically depends on a hyper-
parameter. We demonstrate that one can use our novel method
and forget about the tuning, nevertheless obtaining competitive
results.
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