407 research outputs found

    Assisting walking balance using a bio-inspired exoskeleton controller

    Get PDF
    Background: Balance control is important for mobility, yet exoskeleton research has mainly focused on improving metabolic energy efficiency. Here we present a biomimetic exoskeleton controller that supports walking balance and reduces muscle activity. Methods: Humans restore balance after a perturbation by adjusting activity of the muscles actuating the ankle in proportion to deviations from steady-state center of mass kinematics. We designed a controller that mimics the neural control of steady-state walking and the balance recovery responses to perturbations. This controller uses both feedback from ankle kinematics in accordance with an existing model and feedback from the center of mass velocity. Control parameters were estimated by fitting the experimental relation between kinematics and ankle moments observed in humans that were walking while being perturbed by push and pull perturbations. This identified model was implemented on a bilateral ankle exoskeleton. Results: Across twelve subjects, exoskeleton support reduced calf muscle activity in steady-state walking by 19% with respect to a minimal impedance controller (p < 0.001). Proportional feedback of the center of mass velocity improved balance support after perturbation. Muscle activity is reduced in response to push and pull perturbations by 10% (p = 0.006) and 16% (p < 0.001) and center of mass deviations by 9% (p = 0.026) and 18% (p = 0.002) with respect to the same controller without center of mass feedback. Conclusion: Our control approach implemented on bilateral ankle exoskeletons can thus effectively support steady-state walking and balance control and therefore has the potential to improve mobility in balance-impaired individuals.Support Biomechanical Engineerin

    Neuromuscular Controller Embedded in a Powered Ankle Exoskeleton:Effects on Gait, Clinical Features and Subjective Perspective of Incomplete Spinal Cord Injured Subjects

    Get PDF
    Powered exoskeletons are among the emerging technologies claiming to assist functional ambulation. The potential to adapt robotic assistance based on specific motor abilities of incomplete spinal cord injury (iSCI) subjects, is crucial to optimize Human-Robot Interaction (HRI). Achilles, an autonomous wearable robot able to assist ankle during walking, was developed for iSCI subjects and utilizes a NeuroMuscular Controller (NMC). NMC can be used to adapt robotic assistance based on specific residual functional abilities of subjects. The main aim of this pilot study was to analyze the effects of the NMC-controlled Achilles, used as an assistive device, on chronic iSCI participants' performance, by assessing gait speed during 10-session training of robot-aided walking. Secondary aims were to assess training impact on participants' motion, clinical and functional features and to evaluate subjective perspective in terms of attitude towards technology, workload, usability and satisfaction. Results showed that 5 training sessions were necessary to significantly improve robot-aided gait speed on short paths and consequently to optimize HRI. Moreover, the training allowed participants who initially were not able to walk for 6 minutes, to improve gait endurance during Achilles-aided walking and to reduce perceived fatigue. Improvements were obtained also in gait speed during free walking, thus suggesting a potential rehabilitative impact, even if Achilles-aided walking was not faster than free walking. Participants' subjective evaluations indicated a positive experience

    Vortices in vibrated granular rods

    Full text link
    We report the experimental observation of novel vortex patterns in vertically vibrated granular rods. Above a critical packing fraction, moving ordered domains of nearly vertical rods spontaneously form and coexist with horizontal rods. The domains of vertical rods coarsen in time to form large vortices. We investigate the conditions under which the vortices occur by varying the number of rods, vibration amplitude and frequency. The size of the vortices increases with the number of rods. We characterize the growth of the ordered domains by measuring the area fraction of the ordered regions as a function of time. A {\em void filling} model is presented to describe the nucleation and growth of the vertical domains. We track the ends of the vertical rods and obtain the velocity fields of the vortices. The rotation speed of the rods is observed to depend on the vibration velocity of the container and on the packing. To investigate the impact of the direction of driving on the observed phenomena, we performed experiments with the container vibrated horizontally. Although vertical domains form, vortices are not observed. We therefore argue that the motion is generated due to the interaction of the inclination of the rods with the bottom of a vertically vibrated container. We also perform simple experiments with a single row of rods in an annulus. These experiments directly demonstrate that the rod motion is generated when the rods are inclined from the vertical, and is always in the direction of the inclination.Comment: 6 pages, 10 figure, 2 movies at http://physics.clarku.edu/vortex uses revtex

    Intermittent control models of human standing: similarities and differences

    Get PDF
    Two architectures of intermittent control are compared and contrasted in the context of the single inverted pendulum model often used for describing standing in humans. The architectures are similar insofar as they use periods of open-loop control punctuated by switching events when crossing a switching surface to keep the system state trajectories close to trajectories leading to equilibrium. The architectures differ in two significant ways. Firstly, in one case, the open-loop control trajectory is generated by a system-matched hold, and in the other case, the open-loop control signal is zero. Secondly, prediction is used in one case but not the other. The former difference is examined in this paper. The zero control alternative leads to periodic oscillations associated with limit cycles; whereas the system-matched control alternative gives trajectories (including homoclinic orbits) which contain the equilibrium point and do not have oscillatory behaviour. Despite this difference in behaviour, it is further shown that behaviour can appear similar when either the system is perturbed by additive noise or the system-matched trajectory generation is perturbed. The purpose of the research is to come to a common approach for understanding the theoretical properties of the two alternatives with the twin aims of choosing which provides the best explanation of current experimental data (which may not, by itself, distinguish beween the two alternatives) and suggesting future experiments to distinguish between the two alternatives

    Accelerated hand bone mineral density loss is associated with progressive joint damage in hands and feet in recent-onset rheumatoid arthritis

    Get PDF
    Introduction: To investigate whether accelerated hand bone mineral density (BMD) loss is associated with progressive joint damage in hands and feet in the first year of rheumatoid arthritis (RA) and whether it is an independent predictor of subsequent progressive total joint damage after 4 years. Methods: In 256 recent-onset RA patients, baseline and 1-year hand BMD was measured in metacarpals 2-4 by digital X-ray radiogrammetry. Joint damage in hands and feet were scored in random order according to the Sharp-van der Heijde method at baseline and yearly up to 4 years. Results: 68% of the patients had accelerated hand BMD loss (>-0.003 g/cm(2)) in the first year of RA. Hand BMD loss was associated with progressive joint damage after 1 year both in hands and feet with odds ratios (OR) (95% confidence intervals [CI]) of 5.3 (1.3-20.9) and 3.1 (1.0-9.7). In univariate analysis, hand BMD loss in the first year was a predictor of subsequent progressive total joint damage after 4 years with an OR (95% CI) of 3.1 (1.3-7.6). Multivariate analysis showed that only progressive joint damage in the first year and anti-citrullinated protein antibody positivity were independent predictors of long-term progressive joint damage. Conclusions: In the first year of RA, accelerated hand BMD loss is associated with progressive joint damage in both hands and feet. Hand BMD loss in the first year of recent-onset RA predicts subsequent progressive total joint damage, however not independent of progressive joint damage in the first year.Pathophysiology and treatment of rheumatic disease

    Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry

    Get PDF
    The dielectric properties of alpha-MgH2 are investigated in the photon energy range between 1 and 6.5 eV. For this purpose, a novel sample configuration and experimental setup are developed that allow both optical transmission and ellipsometric measurements of a transparent thin film in equilibrium with hydrogen. We show that alpha-MgH2 is a transparent, colour neutral insulator with a band gap of 5.6 +/- 0.1 eV. It has an intrinsic transparency of about 80% over the whole visible spectrum. The dielectric function found in this work confirms very recent band structure calculations using the GW approximation by Alford and Chou [J.A. Alford and M.Y. Chou (unpublished)]. As Pd is used as a cap layer we report also the optical properties of PdHx thin films.Comment: REVTeX4, 15 pages, 12 figures, 5 table
    corecore