39,213 research outputs found

    Existence theorems for a nonlinear second-order distributional differential equation

    Full text link
    In this work, we are concerned with existence of solutions for a nonlinear second-order distributional differential equation, which contains measure differential equations and stochastic differential equations as special cases. The proof is based on the Leray--Schauder nonlinear alternative and Kurzweil--Henstock--Stieltjes integrals. Meanwhile, examples are worked out to demonstrate that the main results are sharp.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of King Saud University - Science', ISSN 1018-3647. Submitted 05-March-2017; revised 24-April-2017; accepted for publication 26-April-201

    Signature of Fermi surface anisotropy in point contact conductance in the presence of defects

    Get PDF
    In a previous paper (Avotina et al.,Phys. Rev. B Vol.71, 115430 (2005)) we have shown that in principle it is possible to image the defect positions below a metal surface by means of a scanning tunnelling microscope. The principle relies on the interference of electron waves scattered on the defects, which give rise to small but measurable conductance fluctuations. Whereas in that work the band structure was assumed to be free-electron like, here we investigate the effects of Fermi surface anisotropy. We demonstrate that the amplitude and period of the conductance oscillations are determined by the local geometry of the Fermi surface. The signal results from those points for which the electron velocity is directed along the vector connecting the point contact to the defect. For a general Fermi surface geometry the position of the maximum amplitude of the conductance oscillations is not found for the tip directly above the defect. We have determined optimal conditions for determination of defect positions in metals with closed and open Fermi surfaces.Comment: 23 pages, 8 figure

    Magneto-quantum oscillations of the conductance of a tunnel point-contact in the presence of a single defect

    Get PDF
    The influence of a quantizing magnetic field HH to the conductance of a tunnel point contact in the presence of the single defect has been considered. We demonstrate that the conductance exhibits specific magneto-quantum oscillations, the amplitude and period of which depend on the distance between the contact and the defect. We show that a non-monotonic dependence of the point-contact conductance results from a superposition of two types of oscillations: A short period oscillation arising from electron focusing by the field HH and a long period oscillation of Aharonov-Bohm-type originated from the magnetic flux passing through the closed trajectories of electrons moving from the contact to the defect and returning back to the contact.Comment: 13 pages, 3 figure

    Acoustic Attenuation by Two-dimensional Arrays of Rigid Cylinders

    Full text link
    In this Letter, we present a theoretical analysis of the acoustic transmission through two-dimensional arrays of straight rigid cylinders placed parallelly in the air. Both periodic and completely random arrangements of the cylinders are considered. The results for the sound attenuation through the periodic arrays are shown to be in a remarkable agreement with the reported experimental data. As the arrangement of the cylinders is randomized, the transmission is significantly reduced for a wider range of frequencies. For the periodic arrays, the acoustic band structures are computed by the plane-wave expansion method and are also shown to agree with previous results.Comment: 4 pages, 3 figure

    Broken symmetry, excitons, gapless modes and topological excitations in Trilayer Quantum Hall systems

    Full text link
    We study the interlayer coherent incompressible phase in Trilayer Quantum Hall systems (TLQH) at total filling factor νT=1 \nu_{T}=1 from three approaches: Mutual Composite Fermion (MCF), Composite Boson (CB) and wavefunction approach. Just like in Bilayer Quantum Hall system, CB approach is superior than MCF approach in studying TLQH with broken symmetry. The Hall and Hall drag resistivities are found to be quantized at h/e2 h/e^{2} . Two neutral gapless modes with linear dispersion relations are identified and the ratio of the two velocities is close to 3 \sqrt{3} . The novel excitation spectra are classified into two classes: Charge neutral bosonic 2-body bound states and Charge ±1 \pm 1 fermionic 3-body bound states. In general, there are two 2-body Kosterlize-Thouless (KT) transition temperatures and one 3-body KT transition. The Charge ±1 \pm 1 3-body fermionic bound states may be the main dissipation source of transport measurements. The broken symmetry in terms of SU(3) SU(3) algebra is studied. The structure of excitons and their flowing patterns are given. The coupling between the two Goldstone modes may lead to the broadening in the zero-bias peak in the interlayer correlated tunnelings of the TLQH. Several interesting features unique to TLQH are outlined. Limitations of the CB approach are also pointed out.Comment: 10 pages, 3 figures, Final version to be published in Phys. Rev.

    Extreme non-linear response of ultra-narrow optical transitions in cavity QED for laser stabilization

    Full text link
    We explore the potential of direct spectroscopy of ultra-narrow optical transitions of atoms localized in an optical cavity. In contrast to stabilization against a reference cavity, which is the approach currently used for the most highly stabilized lasers, stabilization against an atomic transition does not suffer from Brownian thermal noise. Spectroscopy of ultra-narrow optical transitions in a cavity operates in a very highly saturated regime in which non-linear effects such as bistability play an important role. From the universal behavior of the Jaynes-Cummings model with dissipation, we derive the fundamental limits for laser stabilization using direct spectroscopy of ultra-narrow atomic lines. We find that with current lattice clock experiments, laser linewidths of about 1 mHz can be achieved in principle, and the ultimate limitations of this technique are at the 1 μ\mu Hz level.Comment: 5 pages, 4 figure

    Strong coupling of a mechanical oscillator and a single atom

    Get PDF
    We propose and analyze a setup to achieve strong coupling between a single trapped atom and a mechanical oscillator. The interaction between the motion of the atom and the mechanical oscillator is mediated by a quantized light field in a laser driven high-finesse cavity. In particular, we show that high fidelity transfer of quantum states between the atom and the mechanical oscillator is in reach for existing or near future experimental parameters. Our setup provides the basic toolbox for coherent manipulation, preparation and measurement of micro- and nanomechanical oscillators via the tools of atomic physics.Comment: 4 pages, 2 figures, minro changes, accepted by PR

    SDF1 Gene Variation Is Associated with Circulating SDF1 alpha Level and Endothelial Progenitor Cell Number-The Bruneck Study

    Get PDF
    BACKGROUND: Stromal cell-derived factor-1 (SDF1) and its receptor CXC chemokine receptor 4 (CXCR4) play a critical role in progenitor cell homing, mobilization and differentiation. It would be interesting to assess the predictive value of SDF-1alpha level for EPC number, and to ascertain whether there is a relationship between SDF1 gene variation, plasma SDF-1alpha level, and the number and function of circulating EPCs. We also tested whether EPC number and function was related to CXCR4 gene variation. METHODOLOGY AND PRINCIPAL FINDINGS: We genotyped a cohort of individuals who participated in the Bruneck Study for single nucleotide polymorphisms (SNPs) in the SDF1 and CXCR4 genes, and measured blood SDF1alpha level as well as EPC number and function. SDF1alpha levels were correlated with age, gender, alcohol consumption, circulating reticulocyte numbers, and concentrations of matrix metalloproteinase-9, C-reactive protein, cystatin C, fibrinogen and homocytein. In blood samples taken in 2005, EPC number was inversely associated with SDF1alpha level (p<0.001). EPC number in 2005 was also inversely associated with SDF1alpha level in 2000 (p = 0.009), suggesting a predictive value of plasma SDF1alpha level for EPC number. There was an association between the SDF1 gene rs2297630 SNP A/A genotype, increased SDF1alpha level (p = 0.002) and lower EPC number (p = 0.006). CONCLUSIONS: Our data indicate that a SDF1 gene variation (rs2297630) has an influence on SDF1alpha level and circulating EPC number, and that plasma SDF1alpha level is a predictor of EPC number
    • …
    corecore