26,357 research outputs found

    Rapid purification of quantum systems by measuring in a feedback-controlled unbiased basis

    Full text link
    Rapid-purification by feedback --- specifically, reducing the mean impurity faster than by measurement alone --- can be achieved by making the eigenbasis of the density matrix to be unbiased relative to the measurement basis. Here we further examine the protocol introduced by Combes and Jacobs [Phys.Rev.Lett. {\bf 96}, 010504 (2006)] involving continuous measurement of the observable JzJ_z for a DD-dimensional system. We rigorously re-derive the lower bound (2/3)(D+1)(2/3)(D+1) on the achievable speed-up factor, and also an upper bound, namely D2/2D^2/2, for all feedback protocols that use measurements in unbiased bases. Finally we extend our results to nn independent measurements on a register of nn qubits, and derive an upper bound on the achievable speed-up factor that scales linearly with nn.Comment: v2: published versio

    Comparison of passive microwave and modeled estimates of total watershed SWE in the continental United States

    Get PDF
    In the U.S., a dedicated system of snow measurement stations and snowpack modeling products is available to estimate the snow water equivalent (SWE) throughout the winter season. In other regions of the world that depend on snowmelt for water resources, snow data can be scarce, and these regions are vulnerable to drought or flood conditions. Even in the U.S., water resource management is hampered by limited snow data in certain regions, as evident by the 2011 Missouri Basin flooding due in large part to the significant Plains snowpack. Satellite data could potentially provide important information in under‐sampled areas. This study compared the daily AMSR‐E and SSM/I SWE products over nine winter seasons to spatially distributed, modeled output SNODAS summed over 2100 watersheds in the conterminous U.S. Results show large areas where the passive microwave retrievals are highly correlated to the SNODAS data, particularly in the northern Great Plains and southern Rocky Mountain regions. However, the passive microwave SWE is significantly lower than SNODAS in heavily forested areas, and regions that typically receive a deep snowpack. The best correlations are associated with basins in which maximum annual SWE is less than 200 mm, and forest fraction is less than 20%. Even in many watersheds with poor correlations between the passive microwave data and SNODAS maximum annual SWE values, the overall pattern of accumulation and ablation did show good agreement and therefore may provide useful hydrologic information on melt timing and season length

    Measurement of dimensional stability

    Get PDF
    A technique was developed for measuring, with a precision of one part 10 to the 9th power, changes in physical dimensions delta L/L. Measurements have commenced on five materials: Heraeus-Schott Homosil (vitreous silica), Corning 7940 (vitreous silica), Corning ULE 7971 (titanium silicate), Schott Zero-Dur, and Owens-Illinois Cer-Vit C-101. The study was extended to include Universal Cyclops Invar LR-35 and Simonds-Saw Superinvar

    Floppy modes and the free energy: Rigidity and connectivity percolation on Bethe Lattices

    Full text link
    We show that negative of the number of floppy modes behaves as a free energy for both connectivity and rigidity percolation, and we illustrate this result using Bethe lattices. The rigidity transition on Bethe lattices is found to be first order at a bond concentration close to that predicted by Maxwell constraint counting. We calculate the probability of a bond being on the infinite cluster and also on the overconstrained part of the infinite cluster, and show how a specific heat can be defined as the second derivative of the free energy. We demonstrate that the Bethe lattice solution is equivalent to that of the random bond model, where points are joined randomly (with equal probability at all length scales) to have a given coordination, and then subsequently bonds are randomly removed.Comment: RevTeX 11 pages + epsfig embedded figures. Submitted to Phys. Rev.

    Interaction of vortices in superconductors with kappa close to 2^(-1/2)

    Full text link
    Using a perturbative approach to the infinitely degenerate Bogomolnyi vortex state for a superconductor with kappa = 2^(-1/2), T -> T_c, we calculate the interaction of vortices in a superconductor with kappa close to 2^(-1/2). We find, numerically and analytically, that depending on the material the interaction potential between the vortices varies with decreasing kappa from purely repulsive (as in a type-II superconductor) to purely attractive (as in a type-I superconductor) in two different ways: either vortices form a bound state and the distance between them changes gradually from infinity to zero, or this transition occurs in a discontinuous way as a result of a competition between minima at infinity and zero. We study the discontinuous transition between the vortex and Meissner states caused by the non-monotonous vortex interaction and calculate the corresponding magnetization jump.Comment: v1:original submit v2:changed formate of images (gave problems to some) v3:corrected fig v4v6 (was -v4v6) orthographic corrections (and U_lat/int) mismatch v4:more small orthographic corrections v5:converted to revtex4 and bibTex v6:Renamed images to submit to pr

    Affective iconic words benefit from additional sound–meaning integration in the left amygdala

    Get PDF
    Recent studies have shown that a similarity between sound and meaning of a word (i.e., iconicity) can help more readily access the meaning of that word, but the neural mechanisms underlying this beneficial role of iconicity in semantic processing remain largely unknown. In an fMRI study, we focused on the affective domain and examined whether affective iconic words (e.g., high arousal in both sound and meaning) activate additional brain regions that integrate emotional information from different domains (i.e., sound and meaning). In line with our hypothesis, affective iconic words, compared to their non‐iconic counterparts, elicited additional BOLD responses in the left amygdala known for its role in multimodal representation of emotions. Functional connectivity analyses revealed that the observed amygdalar activity was modulated by an interaction of iconic condition and activations in two hubs representative for processing sound (left superior temporal gyrus) and meaning (left inferior frontal gyrus) of words. These results provide a neural explanation for the facilitative role of iconicity in language processing and indicate that language users are sensitive to the interaction between sound and meaning aspect of words, suggesting the existence of iconicity as a general property of human language

    Tradeoff between extractable mechanical work, accessible entanglement, and ability to act as a reference system, under arbitrary superselection rules

    Full text link
    Superselection rules (SSRs) limit the mechanical and quantum processing resources represented by quantum states. However SSRs can be violated using reference systems to break the underlying symmetry. We show that there is a duality between the ability of a system to do mechanical work and to act as a reference system. Further, for a bipartite system in a globally symmetric pure state, we find a triality between the system's ability to do local mechanical work, its ability to do ``logical work'' due to its accessible entanglement, and its ability to act as a shared reference system.Comment: 5 pages, no figures. Extended resubmitted version. Slightly modified title. Transferred to PR
    • 

    corecore