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RESEARCH ARTICLE
10.1002/2013WR014734

Comparison of passive microwave and modeled estimates of
total watershed SWE in the continental United States
Carrie M. Vuyovich1, Jennifer M. Jacobs2, and Steven F. Daly1

1Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, USA, 2Department of Civil Engineering,
University of New Hampshire, Durham, New Hampshire, USA

Abstract In the U.S., a dedicated system of snow measurement stations and snowpack modeling prod-
ucts is available to estimate the snow water equivalent (SWE) throughout the winter season. In other
regions of the world that depend on snowmelt for water resources, snow data can be scarce, and these
regions are vulnerable to drought or flood conditions. Even in the U.S., water resource management is ham-
pered by limited snow data in certain regions, as evident by the 2011 Missouri Basin flooding due in large
part to the significant Plains snowpack. Satellite data could potentially provide important information in
under-sampled areas. This study compared the daily AMSR-E and SSM/I SWE products over nine winter sea-
sons to spatially distributed, modeled output SNODAS summed over 2100 watersheds in the conterminous
U.S. Results show large areas where the passive microwave retrievals are highly correlated to the SNODAS
data, particularly in the northern Great Plains and southern Rocky Mountain regions. However, the passive
microwave SWE is significantly lower than SNODAS in heavily forested areas, and regions that typically
receive a deep snowpack. The best correlations are associated with basins in which maximum annual SWE
is less than 200 mm, and forest fraction is less than 20%. Even in many watersheds with poor correlations
between the passive microwave data and SNODAS maximum annual SWE values, the overall pattern of
accumulation and ablation did show good agreement and therefore may provide useful hydrologic infor-
mation on melt timing and season length.

1. Introduction

Snow is an important source of water in many temperate regions of the world. In the mountainous, western
U.S., snowmelt accounts for up to 75% of the annual streamflow [Doesken and Judson, 1996; Daly et al.,
2001]. Other regions of the U.S., for example, the Great Plains, do not rely as heavily on snow for water sup-
ply, but can still experience significant flooding as a result of snowmelt [Todhunter, 2001; USACE, 2012].
Water management in these regions requires accurate, timely estimates of snow water equivalent (SWE) for
resource allocation and flood forecasting. However, validation of SWE estimates can be challenging given
the heterogeneous and dynamic nature of snow, and the varying resolutions of measurements.

Satellite-based passive microwave sensors could provide spatially distributed snowpack information, partic-
ularly in remote, data-sparse regions because they have a twice-daily temporal resolution and the ability to
see through clouds and at night. However, known sources of error prohibit the operational use of this data
set in many regions. In regions, where heavy vegetation and significant snowpack depths do not impact the
data, studies have shown promising results in the passive microwave estimates of SWE [Dong et al., 2005].
In the Great Plains of the United States and the Canadian Plains where the algorithms were developed,
SSM/I SWE compares well to ground observations [Derksen et al., 2003; Mote et al., 2003; Chang et al., 2005].
Tait [1998] compared passive microwave SWE estimates to ground observations in the United States and
Russia, categorized by land-cover, and found good agreement in nonforested, flat regions when wet snow
or depth hoar was not affecting the microwave signal. Vuyovich and Jacobs [2011] found that passive micro-
wave data provided reasonable estimates of SWE in the Upper Helmand Watershed in central Afghanistan.
Modeled snowmelt runoff estimates from this basin improved when initialized with passive microwave SWE
estimates as compared to using available observational and satellite-based meteorological data alone.

Passive microwave SWE retrieval algorithms have typically relied on empirical relationships between either
snow depth or SWE and frequency dependent signal scattering through the snowpack at different channels
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[Chang et al., 1987]. An estimate of the SWE is obtained by taking the difference between the return signals
at two different passive microwave frequencies: a low frequency, typically 18–19 GHz, where scattering by
snow is less than at a high frequency, typically around 37 GHz, and applying a coefficient derived from radi-
ative transfer theory. Several sources of error in microwave SWE retrievals stem from the dynamic nature of
snow and the static assumptions made in the empirical formulations concerning snow properties. Studies
have shown emission signatures to be affected by snow depth [Dong et al., 2005; Foster et al., 2005]. It is
estimated that the signal ‘‘saturates’’ at 1 m depth (or approximately 250 mm SWE), above which soil emis-
sions through the snowpack at the higher frequency microwave signal are no longer detectable [Clifford,
2010]. Liquid water in the snowpack is significantly more absorptive than ice at the microwave frequencies
[M€atzler, 1987] and eliminates the brightness temperature (TB) gradient used to estimate SWE [Hallikainen
et al., 1986; Walker and Goodison, 1993]. Therefore, many studies avoid evaluating passive microwave data
during the spring, when snow melt and rainfall can introduce error in the data. Other snowpack characteris-
tics such as density and crystal size also affect the passive microwave signal by increasing the spectral gradi-
ent with increases in grain growth [Foster et al., 1999; Hall et al., 1986; Josberger and Mognard, 2002; Durand
et al., 2011].

M€atzler and Standley [2000] suggested that topography of the ground has a significant impact on micro-
wave retrievals. However, other studies found little or no evidence of error due to elevation gradients over
large regions [Dong et al., 2005; Vuyovich and Jacobs, 2011]. It is possible that errors due to terrain are aver-
aged out over large pixel areas or that in high elevation regions more significant error is caused by the satu-
ration of the signal in deep snow. Several studies have shown a significant impact of vegetation on the
passive microwave signal because the liquid water in the tree branches and leaves emits microwave radia-
tion [Chang et al., 1996; Foster et al., 2005; Derksen et al., 2005]. Vander Jagt et al. [2013] found that in pixels
with significant vegetation, the error in the passive microwave estimate was on the same order of magni-
tude as the actual snow depth, making the data virtually unusable. Ongoing research, which has attempted
to account for these errors and to improve results regionally and seasonally, has had varied success [Farmer
et al., 2010; Tedesco and Narvekar, 2010; Mizukami and Perica, 2012].

The NWS National Operational Hydrologic Remote Sensing Center (NOHRSC) offers a near real-time 1 km2

spatially distributed estimate of SWE and other snow properties across the continental United States
(CONUS) through its SNOw Data Assimilation System (SNODAS). SNODAS integrates a combination of
downscaled forcing data, an energy balance snow model and assimilated observations in their daily gridded
SWE product to arrive at their best estimate of the snow characteristics over the United States and to mini-
mize error associated with any individual method [Carroll et al., 2006]. Though these data are also subject to
errors, this product provides the only real-time spatially distributed estimate of snowpack conditions
throughout the U.S. and is used operationally at several locations [e.g., Lea and Reid, 2006; Schneiderman
et al., 2013]. The snow model within SNODAS has been evaluated and generally shown to provide good
results at a point scale [Rutter et al., 2008; Frankenstein et al., 2008], though over a larger scale, particularly
where ground observations are sparse or biased, additional error is introduced [Molotch and Bales, 2005;
Meromy et al., 2013]. In the Sierra Nevada, Rittger et al. [2011] and Dozier [2011] showed that SNODAS esti-
mates of SWE are less than reconstructed SWE values and spring runoff volumes, while Guan et al. [2013]
found that a blended estimate of reconstruction and ground observations provided the best results. Clow
et al. [2012] used field surveys and water balance analysis to evaluate SNODAS SWE in headwater basins in
Colorado. They found good agreement in forested areas, but poor agreement in areas impacted by wind
redistribution of the snowpack.

A few previous efforts to evaluate the passive microwave estimates of SWE have used the SNODAS product
for comparison. Azar et al. [2008] evaluated the SSM/I SWE products in the Great Lakes region using the
SNODAS data and found poor results using the original passive microwave algorithm. Tedesco and Narvekar
[2010] compared monthly estimates of AMSR-E SWE to SNODAS (resampled at 25 km) over the 2004–2005
winter season, and found poor correlation when evaluating the entire U.S. They also classified the pixels by
forest cover fraction and found better correlations in areas of higher forest fraction and density, which they
attributed to shallow snow in the open areas.

This study aims to provide a comprehensive examination of the regional characteristics associated with sat-
ellite observations of SWE at a scale useful for water resource applications in the United States. We hypothe-
size that existing microwave retrieval algorithms will compare favorably to the SNODAS SWE estimates in
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basins which have minimal vegetation or topography and where the snow depth does not exceed a satura-
tion threshold. To test this hypothesis, we analyzed the SWE estimates derived from two satellite sensors,
AMSR-E and SSM/I, and the SNODAS daily gridded SWE by watersheds across the U.S. to evaluate the value
of these snow data in hydrologic processes. Comparison at the basin scale also provides future opportunity
to evaluate the SWE in conjunction with watershed runoff. There are several questions this research aims to
answer:

1. In which U.S. basins do passive microwave estimates of SWE compare well to the SNODAS product as
evaluated by correlation and rank-order of the peak SWE and seasonal snowpack evolution?

2. Is the level of agreement a function of forest cover, elevation or maximum SWE?

3. In basins where passive microwave SWE does not match the magnitude of SNODAS data is there a com-
mon pattern of snow accumulation and melt, year-to-year variability, or relative magnitude?

2. Study Area and Data

For this study, the SWE products were compared by major hydrologic regions of the continental U.S. The
USGS fourth level basins, designated by an eight digit Hydrologic Unit Code (HUC), were selected for com-
parison. There are 2100 HUC-8 basins, with an average area of 3700 km2. The elevation range within each of
the HUC-8 basins was determined using the USGS 1 arc sec (approximately 30 m) national elevation data
set (NED) (data available from the USGS). The Vegetation Continuous Field from the University of Maryland
[Hansen et al., 2006] was used to estimate the percentage of forest cover by HUC. In addition, regional com-
parisons were made using the 18 USGS first level basins, designated by a two digit HUC, which have an
average area of 434,000 km2 (Figure 1).

2.1. Passive Microwave
Daily passive microwave SWE data were available from two sources during the period of comparison; the
Special Sensor Microwave/Imager (SSM/I) and the Advanced Microwave Scanning Radiometer-Earth Observ-
ing System (AMSR-E). The SSM/I sensor was launched in 1987 on board the Defense Meteorological Satellite

Figure 1. Overview map of the study region with HUC2 watersheds outlined and percentage forest cover shown. Example watersheds are
shown in black and labeled.

Water Resources Research 10.1002/2013WR014734

VUYOVICH ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 9090



Program (DMSP) satellites. These data are available near real-time and have the advantage of a long histori-
cal record. SWE estimates are derived from the SSM/I brightness temperatures measured at wavelengths 19
and 37 GHz, and have a spatial resolution of 69 3 43 km (19.4 GHz) and 37 3 29 km [Armstrong et al.,
1995]. SSM/I data were processed using the Chang algorithm:

SWE5cðTB;192TB;37Þ (1)

where SWE is in mm; TB is the temperature brightness at different channels (K); and c is typically given as
4.8 mm/K and acquired from the National Snow and Ice Data Center (M. J. Brodzik, NSIDC, personal commu-
nication, 2012).

AMSR-E was launched on NASA’s Aqua satellite in 2002 and calculates SWE based on brightness tempera-
tures measured at wavelengths 19.7 and 36.5 GHz, with a spatial resolution of 28 3 16 km (19.7 GHz) and
14 3 8 km (36.5 GHz) [Kelly, 2009]. For this study, AMSR-E data were acquired from NSIDC (http://nsidc.org/
data/AE_DySno), which was processed using the Kelly [2009] algorithm. That process uses additional bands
at 10 and 89 GHz to aid in the detection of deep and shallow snow, respectively, and the algorithm
accounts for the forest fraction of the underlying ground,

SD5ff p1
TB;V182TB;V36
� �

12b � fdð Þ

� �
1 12ffð Þ p1 TB;V102TB;V36

� �
1p2 TB;V102TB;V18

� �� �
(2)

where SD is snow depth (cm), ff is forest fraction, fd is forest density, b is an optimized coefficient found to
be 0.6, and p1 and p2 are dynamic coefficients calculated as the difference in polarization at channels 36
and 18, respectively. Snow depths are then converted to SWE using seasonal density estimates for different
snow classes based on Sturm et al. [1995].

SSM/I and AMSR-E global SWE products are produced using these algorithms and available twice daily;
ascending passes which occur in the afternoon and descending passes which occur in the early morning.
For this study, only descending SWE data were used to reduce the potential wet snow impacts in the after-
noon. A gap in the satellite swath coverage can occur every 3–4 days, depending on the latitude of the
region. This study uses the products’ EASE-grid projection at a 625 km2 (25 km 3 25 km) resolution.

2.2. SNODAS
The NOAA’s SNODAS combines data from various sources—ground observations, airborne and satellite esti-
mates—with model results, to arrive at a 1 km2 spatially distributed estimate of snow cover and SWE [Carroll
et al., 2006]. Their procedure follows three main steps; ingest and downscale model weather data, simulate
snow cover using a physically based energy balance model, and assimilate snow observations to adjust
model results. Forcing data come from the Rapid Update Cycle 2 (RUC2) Numerical Weather Prediction
(NWP) model output and is downscaled from 13 to 1 km resolution using a digital elevation model. The
snow model is an energy and mass-balance, multilayer model based on SNTHERM.89 [Jordan, 1990]. Assimi-
lated observations are acquired from state and federal automated ground observations, snow surveys, and
gamma flights as well as satellite-based snow extent information. SNODAS data are available through NSIDC
from 1 October 2003 to the present (http://nsidc.org/data/G02158).

3. Methods

Gridded daily SWE data from the two passive microwave sensors and SNODAS were obtained for eight
water years, 2004–2011, when all three data sets were available. For each of the AMSR-E, SSM/I, and the
SNODAS SWE data sets, the gridded data were aggregated by HUC-8 to produce a daily time series of
average-basin SWE. To avoid large gaps along the watershed boundaries, the passive microwave data were
resampled to 1 km2 grid cells using the nearest neighbor method which assigns the same value to the pixel
as the data layer in that location without any interpolation. AMSR-E pixels near large water bodies are
flagged within the SWE product and no SWE value is given; therefore only watersheds with no missing data
were used in the comparison. Weekly SWE time series were developed for each HUC-8 using the maximum
weekly values in order to accommodate the satellite overpass cycle which results in some days without sat-
ellite observations. Annual maximum SWE values by HUC were extracted from the weekly time series for
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each of the eight water years. The results are summarized regionally by aggregating results to the 18 two
digit HUCs.

The average, maximum, minimum, and standard deviation of the daily SWE was determined for each HUC
over the periods of interest. The differences in average annual maximum SWE were calculated between the
SNODAS and passive microwave data sets to determine the difference in relative magnitude of the estimates.
The correlation coefficients between microwave SWE and SNODAS estimates for the annual and weekly time
series were also calculated. Differences between SNODAS and the microwave values of annual maximum
SWE values were identified using the Spearman’s rank-order test. Spearman’s rank-order test determines
whether two independent groups are from the same population [Helsel and Hirsch, 2002]. To evaluate spatial
variability within the HUC-8s, the SNODAS data were aggregated to the 25 km by 25 km pixel scale using a
pixel average. The standard deviation of SNODAS SWE with each HUC-8 was then calculated similarly to the
passive microwave data in order to compare the data at the same coarse resolution.

Weekly SWE results were compared using the Nash-Sutcliffe model efficiency index [Nash and Sutcliffe,
1970], which measures the fit between predicted and observed values as:

Efficiency512

XN

i51

ðSWEobs;i2SWEsat;iÞ2

XN

i51

ðSWEobs;i2SWE obs;iÞ2

0
BBBB@

1
CCCCA (3)

where N is the number of weeks during the simulation period, SWEobs,i is the SNODAS ith weekly SWE,
SWEsat,i is the ith weekly SWE value estimated from the AMSR-E or SSM/I data set, and SWE obs;i is the mean
weekly SNODAS SWE value for the simulation period. This metric characterizes the joint evolution of passive
microwave and modeled SWE over the entire winter rather than just the peak SWE. While the SNODAS data
were used as the observational data set in this measure, it is important to note that the model itself has
errors and is not considered ground truth. The efficiency will approach unity if each SNODAS weekly SWE
value matches the remotely sensed weekly SWE value.

The effects of saturation depth, elevation range, and forest cover on SWE estimates were evaluated by cal-
culating correlations between SNODAS and passive microwave average maximum SWE for each HUC-8 by
category. The saturation depth was assessed by comparing passive microwave to SNODAS at increasing
amounts of average maximum annual SWE. The elevation range was evaluated to address the impact of
topography on SWE estimates, and was calculated for each HUC-8 as the difference in maximum and mini-
mum elevation in each basin. Correlations between the passive microwave and SNODAS SWE were deter-
mined for eight elevation range categories. Correlations were also determined for SWE estimates by 10%
increments in total basin forest fraction.

4. Results and Discussion

4.1. Overall Performance
The agreement between average annual maximum SWE for the SNODAS product and the AMSR-E and
SSM/I passive microwave data varies widely across regions of the United States (Figure 2). As anticipated,
the passive microwave data underestimate the SWE for those regions that experience significant annual
snowpacks including the Rocky Mountains, the Pacific Mountain Range, and Northern New England. The
saturation effect appears to be evident when SWE from SNODAS exceeds 150–200 mm. For the western
ranges, the snowpacks’ SWE frequently exceeds 500 mm based on the SNODAS product. AMSR-E is able to
identify the location of those ranges as having relatively deeper snow, but greatly underestimates the SWE
magnitude. SSM/I entirely misses many of these deep snow features. This result broadens Andreadis and
Lettenmaier’s [2006] finding that passive microwave data are problematic when snowpacks were deeper
than 240 mm for Snake River basin in the western U.S. A new finding is that this disagreement is also
broadly evident for those regions in the Northeast in which SWE exceeds 240 mm. In the Northeast region,
the AMSR-E data show better agreement to the SNODAS product than SSM/I which reports little to no
snow. This result extends the modest agreement found previously in the Northeast region, which only
analyzed a single, historic storm in the Middle Atlantic [Foster et al., 2012].
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Interestingly, the passive
microwave data are not
consistently less than the
SNODAS product. In the
Plains regions and the
southeastern portions of
the U.S., microwave SWE
products indicated
greater maximum annual
SWE values than SNODAS
(Figure 3). This is a region
with relatively few obser-
vational data available to
correct the SNODAS
model. Because both
microwave products have
deeper snowpacks in the
northern Plains region,
the actual SWE may be
underestimated by SNO-
DAS. This theory is sup-
ported by previous work
by Josberger et al. [1998]
who suggest that the
northern Great Plains
region is well suited for
estimation of SWE from
microwave observations.
In this same region,
Chang et al. [2005]
showed that the midwin-
ter microwave estimates
of snow depth had a cal-
culated error of 88 mm,
but also pointed to the
strong heterogeneity of
snow depth across the
region which made vali-
dation quite difficult.

In the southern Plains, the
SNODAS SWE values are
consistent with the SSM/I
SWE values but overesti-
mated by the AMSR-E
observations. The AMSR-E
data appear to be biased

high in shallow snow regions, particularly in the southern Plains. A nominal 50 mm snow depth is applied
when the AMSR-E algorithm detects shallow snow [Kelly, 2009]. Armstrong and Brodzik [2002] found that inclu-
sion of the shallow snow detection algorithm led to overestimation of SWE in some regions. Daly et al. [2012]
similarly found early season SWE detection by AMSR-E in Afghanistan was not supported by multispectral
imagery of snow extent.

In regions with significant SWE biases, the relative SWE magnitude across years may still be robust and able
to provide insight for water resource management. Parametric and nonparametric methods were used to

Figure 2. Average maximum annual SWE by HUC-8 for (a) SNODAS, (b) AMSR-E, and (c) SSM/I.
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characterize the correlation of the annual maximum time series between the SNODAS data and each of the
passive microwave data sets (Table 1). The strongest and significant correlations between SNODAS and the
AMSR-E and SSM/I products occur in the northern Plains region (Upper Mississippi and Missouri) and in the
southern Rocky Mountains (Lower Colorado). SNODAS and the AMSR-E SWE estimates also show good
agreement along the Great Lakes region (Ohio), while the SSM/I data are well correlated with SNODAS in
the Pennsylvania region (Mid-Atlantic). For many of the regions, there is not a significant correlation sug-
gesting that either passive microwave or SNODAS SWE estimates are not accurate in that region or that the
two methods provide different information.

Based on the Spearman’s rank-order statistic, AMSR-E and SSM/I are not able to capture the relative magni-
tude of the annual peak SWE for the Upper Colorado, New England, and the Pacific Northwest; the three
HUC-2 regions having SWE values higher than 80 mm. The passive microwave data do not seem to capture
the relative magnitude of the annual peak SWE when it underestimates the total SWE. Limited agreement is
also evident for the four HUCs, Texas-Gulf, South Atlantic-Gulf, Lower Mississippi, and Tennessee, having the
lowest peak snow values, which could be due to limited observations available impacting the SNODAS
results or SWE values below a threshold level for detection by passive microwave.

Figure 3. Difference in average maximum annual SWE by HUC-8 for (a) SNODAS-AMSR-E and (b) SNODAS-SSM/I.
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The standard deviation of estimated SWE within each HUC-8 watershed was calculated daily over the
period of record to assess the spatial variability of estimates within each basin. SNODAS data were
aggregated to the microwave EASE-GRID pixel size in order to match the microwave scale. Figure 4
shows an example of the results on 1 February 2011. There is greater variability within the deep snow
regions along the Pacific mountains and the Rocky Mountains for SNODAS. The AMSR-E data have
greater variability than the SSM/I data, particularly in the New England region where the SSM/I data
shows none. In the Plains basins, the three data sources compare favorably in most years with the
exception of the southern Plains region (e.g., Texas/Oklahoma). In this region, the relatively high variabil-
ity of the passive microwave data, particularly AMSR-E, result from positive SWE values in pixels where
none is likely to exist.

The weekly SWE from the microwave products was compared to the SNODAS product using the Nash-
Sutcliffe efficiency statistic (Table 2). Strong weekly results are evident for the regions that performed well
for interannual variability, e.g., the northern Plains and southern Rockies. Other regions showed promise,
such as the Upper Colorado basin, despite having maximum SWE values that might exceed the passive
microwave threshold for detection. The passive microwave observations appear to be able to capture the
timing of snow accumulation and melt. A region that stands out for the disagreement between SNODAS
and passive microwave in the weekly SWE analysis is the central Plains. This region does not have significant
vegetation or snow depths that would be expected to impact the microwave signal. It is possible that the
SNODAS SWE estimates suffer from lack of observations, though additional work is required to understand
the differences seen in this area.

Overall, passive microwave derived SWE estimates appear to perform the best when the typical HUC-2
annual maximum SWE values are between 15 and 50 mm. Within this range, there is good correlation for
year to year differences and value in the weekly observations. The AMSR-E observations provide SWE esti-
mates that have limited bias as compared to the SNODAS data. At modestly higher SWE values, between 50
and 80 mm, there is a mixture of results with the passive microwave having greater success at matching
the snowpack’s temporal evolution as compared to the magnitude of the annual maximums.

Table 1. HUC-2 Data and Average Annual Maximum SWE Statistics (N 5 8)a

HUC2 Region
Area

(3103 km2)
Forest

Fraction
Elevation

Range (m)

SNODAS Average
Annual Maximum

SWE (mm)

AMSR-E Average
Annual Maximum

SWE (mm)

SSM/I Average
Annual Maximum

SWE (mm)
SNODAS and

AMSR-E R2
SNODAS and

SSM/I R2

SNODAS and
AMSR-E
Sp. Rho

SNODAS and
SSM/I

Sp. Rho

1 New England
Region

158 0.81 1856 118.3 30.1 10.4 0.26 0.15 0.40 0.24

2 Mid-Atlantic Region 288 0.73 1511 45.9 23.8 11.9 0.35 0.79 0.86 0.95
3 South Atlantic-Gulf

Region
698 0.55 1765 4.3 2.7 5.9 0.08 0.14 0.26 20.02

4 Great Lakes Region 303 0.42 1200 70.8 32.6 25.4 0.62 0.24 0.83 0.24
5 Ohio Region 422 0.67 1591 28.2 21.2 13.0 0.37 0.63 0.48 0.69
6 Tennessee Region 106 0.90 1849 11.4 10.6 13.8 0.01 0.02 0.67 0.48
7 Upper Mississippi

Region
492 0.10 593 46.9 42.0 43.0 0.63 0.75 0.76 0.83

8 Lower Mississippi
Region

262 0.45 822 6.8 8.7 8.4 0.47 0.22 0.60 0.38

9 Souris-Red-Rainy
Region

154 0.14 521 76.6 95.4 93.1 0.24 0.53 0.48 0.52

10 Missouri Region 1324 0.12 4106 39.0 42.6 39.5 0.66 0.65 0.62 0.57
11 Arkansas-White-Red

Region
642 0.25 4233 16.2 21.4 13.4 0.10 0.67 0.43 0.76

12 Texas-Gulf Region 464 0.12 1449 4.2 8.2 5.6 0.11 0.13 0.19 0.60
13 Rio Grande Region 344 0.09 4096 16.4 15.1 7.8 0.13 0.64 0.17 0.74
14 Upper Colorado

Region
293 0.27 3204 81.4 62.7 53.1 0.41 0.14 0.57 0.38

15 Lower Colorado
Region

363 0.11 3687 14.5 13.3 7.2 0.65 0.97 0.76 0.90

16 Great Basin Region 368 0.09 3536 53.0 47.0 36.3 0.09 0.03 0.45 20.02
17 Pacific Northwest

Region
710 0.49 4403 141.4 43.4 30.5 0.54 0.30 0.62 0.57

18 California Region 417 0.31 4350 64.7 13.2 7.6 0.09 0.01 0.60 0.26

aBold indicates statistically significant values where critical values are R2 equal 0.46 and Spearman’s ranked correlation coefficient equal 0.738.
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4.2. Effect of Physical
Characteristics
The SWE data were ana-
lyzed by forest cover, sat-
uration depth, and
elevation range to deter-
mine what impact these
factors had on the results.
For forest cover, the
strongest correlations
occur in HUCs with 20%
forest coverage or less,
with generally poorer
correlations occurring
with more vegetation
(Figure 5). The exceptions
are along the East coast,
where AMSR-E shows
good correlations (>0.5)
with SNODAS data in
watersheds along the
eastern side of the Appa-
lachians, North Carolina
up through Virginia, and
SSM/I doing well in cen-
tral Pennsylvania and
New York. In the heavily
forested regions of New
England and around the
Great Lakes, both AMSR-E
and SSM/I underestimate
the maximum SWE val-
ues, though AMSR-E per-
forms better than SSM/I.
It is expected that these
regional differences
between the two micro-
wave data sets’ results
are a function of the
retrieval algorithms used.
While AMSR-E, unlike
SSM/I, accounts for forest
fraction in the current

algorithm, vegetation type is not included. Azar et al. [2008] were able to improve the SSM/I results in the
Great Lakes region by developing an algorithm that uses a Normalized Difference Vegetation Index (NDVI)
to classify the mixed use forest in the region.

Passive microwave estimates of SWE are best correlated with SNODAS data in regions where the maximum
annual SWE values are relatively low and agreement decreases as the SWE increases (Figure 6). In water-
sheds with an annual maximum SWE less than 100 mm, the SSM/I SWE product is better correlated with
SNODAS than AMSR-E. Above 100 mm, AMSR-E has consistently better agreement with SNODAS than SSM/
I, though both correlations decrease with increasing snow depth.

More than half of the eight digit HUCs, or 56% of the total area in the conterminous U.S., have less than 20%
forest coverage. For the regions with less than 200 mm annual maximum SNODAS SWE and less than 20%

Figure 4. Standard deviation of SWE by HUC-8 on 1 February 2011 for (a) SNODAS, (b) AMSR-E, and
(c) SSM/I.
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forest cover, the R2 values between SNODAS and AMSR-E, and SNODAS and SSM/I average annual maximum
SWE are 0.48 and 0.66, respectively. Figure 7 shows the R2 values between SNODAS and the passive micro-
wave weekly SWE for each HUC-8 during the winter months (October–April). Basins with the best agreement
tend to fall outside the areas with greater than 20% forest coverage and greater than 200 mm annual maxi-
mum SNODAS SWE, though several basins with weekly correlations greater than 0.5 do reside in those areas.

The analysis of SWE estimates with terrain does not show a consistent relationship between elevation range
and correlation of the data. Once basins with greater than 20% forest coverage and a greater than 200 mm
average maximum SNODAS SWE were removed, good correlations occur between SNODAS and the passive
microwave data despite large changes in topography. Dong et al. [2005] investigated the impacts of topo-
graphic roughness on SWE estimates at over 3000 observing stations in Canada, and found no significant
impact compared to the effects of deep snow and nearby water bodies. Tong et al. [2010] found that while
algorithms performed better in complex terrain when only SWE values less than 250–400 mm were consid-
ered, the accuracy was still insufficient at a point comparison. At a large watershed scale, the effects of
topography are expected to average out, having a minimal effect on error compared to vegetation and
snow depth.

Times series of SWE data in
basins from six different
regions demonstrate typical
regional differences in the
weekly comparison (Figure
8). Characteristics of each of
the basins and statistical
results of the comparison of
passive microwave SWE with
SNODAS data are given in
Table 3. The Sheyenne Basin
(A) is in the northern Plains
region where all three data
sets compare very well. In
this region, the evolution and
magnitude are typically simi-
lar with correlations between
SNODAS and passive

Table 2. HUC-2 Weekly Statistics for Winter Months: October–April (N 5 242)

HUC2 Region

SNODAS Average
Weekly SWE

(mm)

AMSR-E Average
Weekly SWE

(mm)

SSM/I Average
Weekly SWE

(mm)
SNODAS and AMSR-E

Weekly SWE R2
SNODAS and SSM/I

Weekly SWE R2

SNODAS and
AMSR-E Weekly
Nash-Sutcliffe

SNODAS and
SSM/I Weekly
Nash-Sutcliffe

1 New England Region 47.8 11.3 2.4 0.61 0.33 20.28 20.85
2 Mid-Atlantic Region 13.0 7.0 2.0 0.69 0.43 0.43 20.30
3 South Atlantic-Gulf Region 0.4 0.3 0.7 0.11 0.00 0.08 21.44
4 Great Lakes Region 26.8 10.4 5.4 0.71 0.65 0.10 20.36
5 Ohio Region 5.5 4.0 1.9 0.74 0.50 0.68 0.22
6 Tennessee Region 1.6 1.3 1.0 0.14 0.01 0.01 20.38
7 Upper Mississippi Region 15.6 14.9 10.9 0.78 0.74 0.77 0.67
8 Lower Mississippi Region 0.6 0.9 0.6 0.04 0.00 20.34 20.59
9 Souris-Red-Rainy Region 31.1 32.5 30.7 0.66 0.75 0.62 0.69
10 Missouri Region 17.5 16.9 13.7 0.73 0.76 0.70 0.67
11 Arkansas-White-Red Region 3.2 4.0 2.2 0.48 0.62 0.30 0.58
12 Texas-Gulf Region 0.4 0.7 0.3 0.23 0.07 20.48 20.21
13 Rio Grande Region 7.2 4.5 2.2 0.44 0.64 0.27 20.10
14 Upper Colorado Region 42.4 27.2 20.9 0.67 0.59 0.43 0.14
15 Lower Colorado Region 4.0 3.6 1.2 0.63 0.80 0.62 0.37
16 Great Basin Region 24.3 19.8 12.0 0.60 0.57 0.55 0.20
17 Pacific Northwest Region 73.1 19.6 13.5 0.55 0.55 20.51 20.78
18 California Region 27.3 5.3 2.9 0.38 0.45 20.58 20.79

Figure 5. R2 of average annual maximum SWE in HUC-8s by forest fraction.
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Figure 6. R2 of average annual maximum SWE in HUC-8s for increasing categories of SNODAS
SWE.

Figure 7. R2 of weekly winter SWE, October–April, by HUC-8 for (a) SNODAS and AMSR-E, (b) SNODAS and SSM/I; hatched area shows
HUCs with greater than 20% forest coverage or an average maximum annual SNODAS SWE greater than 200 mm.
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microwave of 0.55 and 0.68 for AMSR-E and SSM/I, respectively, and Nash-Sutcliffe efficiencies between
SNODAS and passive microwave data of 0.48 and 0.52 for AMSR-E and SSM/I, respectively. The Upper Pow-
der Basin (B) is in the Central Plains region where the agreement is not as strong. The basin has a modest
snowpack that is tracked by all data sets, but the strongly negative Nash-Sutcliffe efficiencies show the lack
of agreement between the time series. The Upper Salmon Basin (C) in the Pacific Northwest region has con-
siderable vegetation and deep annual snowpacks. The passive microwave follows a similar accumulation
and ablation trend, and has a correlation of 0.6 to the SNODAS data. However, the microwave SWE is much
lower than the SNODAS SWE, even for relatively shallow snowpacks. The Duschene Basin (D) in the Upper
Colorado region also receives deep snowpack but has a forest fraction of less than 20%. In lighter snow
years, the passive microwave is similar in magnitude to the SNODAS SWE, but in heavier snow years the
microwave data are much less, resulting in an overall negative efficiency measure. The Upper Wisconsin
Basin (E) near the Great Lakes region does not experience deep snow, but is significantly forest covered. As

Figure 8. Example time series of average-basin SWE in different regions (shown in Figure 1), with high and low forest fractions (ff), eleva-
tion ranges (ER), and average maximum annual SWE (based on SNODAS).

Water Resources Research 10.1002/2013WR014734

VUYOVICH ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 9099



compared to the other four watersheds, a difference between AMSR-E and SSM/I SWE estimates is evident
with AMSR-E having a Nash-Sutcliffe efficiency of 0.59 in comparison with SNODAS, while SSM/I has an effi-
ciency in 20.04. The Lower Lake Powell Basin (F) is in the Southern Rockies region with a large elevation
range, minimal vegetation, and a modest annual snowpack. Strong agreement between SNODAS and the
passive microwave SWE is shown by correlations of 0.88 and 0.87 and Nash-Sutcliffe efficiencies of 0.86 and
0.74 for AMSR-E and SSM/I, respectively.

Overall, this study supports many of the findings from the earlier studies [Dong et al., 2005; Vander Jagt
et al., 2013]. The SNODAS and microwave data agree in relatively flat, nonforested areas where previous
studies showed promising microwave results [Derksen et al., 2003; Mote et al., 2003; Chang et al., 2005] and
also in mountainous, nonforested regions [Tait, 1998; Vuyovich and Jacobs, 2011]. Unlike M€atzler and Stand-
ley [2000], this study did not find that large elevation gradients have significant impact on the passive
microwave SWE estimate as compared to SNODAS SWE. Tedesco and Narvekar [2010] reported the highest
correlations between SNODAS and AMSR-E SWE occurred in pixels with 0.3–0.4 forest fraction, whereas we
found the best agreement in basins with a forest fraction of 0.2 or less. This clearly limits the regions for
which microwave observations have values. Thus, inclusion of vegetation information beyond forest frac-
tion in the retrieval algorithm (e.g., NDVI) [Azar et al., 2008] may expand the region for which microwave
observations provide value. The thresholds are also evident for microwave SWE when snow is too deep—
here we found an upper maximum of 200 mm, which is intermediate between Clifford’s [2010] 250 mm and
Tedesco and Narvekar’s [2010] 90 mm. Furthermore, while there are limited studies on shallow snowpacks,
our finding that the algorithm differences between AMSR-E and SSM/I challenge the quantification of
watershed scale SWE estimates in southern regions is supported by Daly et al.’s [2012] findings from their
work in Afghanistan.

5. Conclusion

In this study, we compared SWE estimates from AMSR-E and SSM/I passive microwave satellite sensors to
the SNODAS gridded SWE product for 2100 watersheds in the U.S. No previous research has evaluated the
microwave products over time at this hydrologic scale, and this provided several interesting insights.
Regional differences between the AMSR-E and SSM/I point to the need to better understand the algorithms’
detection of SWE in both heavily forested basins and basins with shallow annual snow. Current use of forest
fraction to characterize the land in the AMSR-E algorithm seems to improve results. A more robust algo-
rithm which includes various vegetation types may improve results further.

A comparison of the standard deviation of SWE within each HUC-8 basin showed that in areas where the
passive microwave signal is impacted by deep snow and vegetation, the spatial variation also suffers. This
suggests that methods to improve the microwave estimates will likely require ancillary data to determine
the spatial distribution of SWE. Further research in this topic will enhance our understanding of how spatial
variability within a microwave pixel is established. For instance, additional analysis of the southern plains is
needed to determine if the shallow snow algorithm or some other physical process is causing AMSR-E data
to overestimate SWE in this region.

Table 3. Weekly Statistics, For Example, HUC-8 Time Series

HUC8 Basin
Forest

Cover (%)
Elevation

Range (m)
Maximum
SWE (mm)

SNODAS and
AMSR-E R2

SNODAS and
SSM/I R2

SNODAS and
AMSR-E

Nash-Sutcliffe

SNODAS and
SSM/I

Nash-Sutcliffe

9020202 UPPER SHEYENNE, ND
(Northern Plains)

8 208 79.5 0.55 0.68 0.48 0.52

10090202 UPPER POWDER, WY
(Central Plains)

0 770 26.0 0.19 0.21 23.12 22.22

17060201 UPPER SALMON, ID
(Northern Rockies)

30 1973 311.5 0.64 0.62 20.38 20.71

14060003 DUCHESNE, UT
(Central Rockies)

16 2573 174.8 0.43 0.26 20.03 20.33

7070001 UPPER WISCONSIN, WI
(Great Lakes)

77 143 111.4 0.70 0.61 0.59 20.04

14070006 LOWER LAKE POWELL, AZ, UT
(Southern Rockies)

0 2169 14.3 0.88 0.87 0.86 0.74
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Results show large areas where the passive microwave retrievals perform well compared to the SNODAS
data, particularly in the northern Great Plains and southern Rocky Mountain regions. The best correlations
are associated with basins in which maximum annual SWE is less than 200 mm, and forest fraction is less
than 20%. While this excludes many regions of the country where snow is a significant source of water, it
increases confidence in results for characteristically similar regions around the world. In the central Plains
region, disagreement between SNODAS and passive microwave SWE will be the focus of future research to
better understand the factors impacting the results.

In watersheds with maximum annual SWE values greater than 200 mm, poor correlations between the pas-
sive microwave data and SNODAS indicated that the relative magnitude of maximum SWE from year-to-
year was not captured. However, the overall temporal pattern of accumulation and ablation did show good
agreement in many of these regions, which may provide useful hydrologic information as to the snow sea-
son length and melt timing. This analysis provides a foundation for future research assessing the SWE esti-
mates in relation to runoff from these basins.
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