5,640 research outputs found

    SU(3) quasidynamical symmetry underlying the Alhassid--Whelan arc of regularity

    Full text link
    The first example of an empirically manifested quasi dynamical symmetry trajectory in the interior of the symmetry triangle of the Interacting Boson Approximation model is identified for large boson numbers. Along this curve, extending from SU(3) to near the critical line of the first order phase transition, spectra exhibit nearly the same degeneracies that characterize the low energy levels of SU(3). This trajectory also lies close to the Alhassid-Whelan arc of regularity, the unique interior region of regular behavior connecting the SU(3) and U(5) vertices, thus offering a possible symmetry-based interpretation of that narrow zone of regularity amidst regions of more chaotic spectra.Comment: 4 pages, LaTeX, 5 eps figure

    Image Storage in Hot Vapors

    Full text link
    We theoretically investigate image propagation and storage in hot atomic vapor. A 4f4f system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.Comment: 11 pages, 3 figure

    Diffraction limit of the sub-Planck structures

    Full text link
    The orthogonality of cat and displaced cat states, underlying Heisenberg limited measurement in quantum metrology, is studied in the limit of large number of states. The asymptotic expression for the corresponding state overlap function, controlled by the sub-Planck structures arising from phase space interference, is obtained exactly. The validity of large phase space support, in which context the asymptotic limit is achieved, is discussed in detail. For large number of coherent states, uniformly located on a circle, it identically matches with the diffraction pattern for a circular ring with uniform angular source strength. This is in accordance with the van Cittert-Zernike theorem, where the overlap function, similar to the mutual coherence function matches with a diffraction pattern.Comment: 5 pages, 3 figure

    Mass and Spin of Poincare Gauge Theory

    Get PDF
    We discuss two expressions for the conserved quantities (energy momentum and angular momentum) of the Poincar\'e Gauge Theory. We show, that the variations of the Hamiltonians, of which the expressions are the respective boundary terms, are well defined, if we choose an appropriate phase space for asymptotic flat gravitating systems. Furthermore, we compare the expressions with others, known from the literature.Comment: 16 pages, plain-tex; to be published in Gen. Rel. Gra

    Quasi-local Energy for Spherically Symmetric Spacetimes

    Full text link
    We present two complementary approaches for determining the reference for the covariant Hamiltonian boundary term quasi-local energy and test them on spherically symmetric spacetimes. On the one hand, we isometrically match the 2-surface and extremize the energy. This can be done in two ways, which we call programs I (without constraint) and II (with additional constraints). On the other hand, we match the orthonormal 4-frames of the dynamic and the reference spacetimes. Then, if we further specify the observer by requiring the reference displacement to be the timelike Killing vector of the reference, the result is the same as program I, and the energy can be positive, zero, or even negative. If, instead, we require that the Lie derivatives of the two-area along the displacement vector in both the dynamic and reference spacetimes to be the same, the result is the same as program II, and it satisfies the usual criteria: the energies are non-negative and vanish only for Minkowski (or anti-de Sitter) spacetime.Comment: 16 pages, no figure

    Nanoplasmonic Lattices for Ultracold atoms

    Get PDF
    We propose to use sub-wavelength confinement of light associated with the near field of plasmonic systems to create nanoscale optical lattices for ultracold atoms. Our approach combines the unique coherence properties of isolated atoms with the sub-wavelength manipulation and strong light-matter interaction associated with nano-plasmonic systems. It allows one to considerably increase the energy scales in the realization of Hubbard models and to engineer effective long-range interactions in coherent and dissipative many-body dynamics. Realistic imperfections and potential applications are discussed.Comment: 5 pages, 3 figures, V2: minor changes, V3: minor changes, added supplemental materia

    Thermo-mechanical behavior of surface acoustic waves in ordered arrays of nanodisks studied by near infrared pump-probe diffraction experiments

    Full text link
    The ultrafast thermal and mechanical dynamics of a two-dimensional lattice of metallic nano-disks has been studied by near infrared pump-probe diffraction measurements, over a temporal range spanning from 100 fs to several nanoseconds. The experiments demonstrate that, in these systems, a two-dimensional surface acoustic wave (2DSAW), with a wavevector given by the reciprocal periodicity of the array, can be excited by ~120 fs Ti:sapphire laser pulses. In order to clarify the interaction between the nanodisks and the substrate, numerical calculations of the elastic eigenmodes and simulations of the thermodynamics of the system are developed through finite-element analysis. At this light, we unambiguously show that the observed 2DSAW velocity shift originates from the mechanical interaction between the 2DSAWs and the nano-disks, while the correlated 2DSAW damping is due to the energy radiation into the substrate.Comment: 13 pages, 10 figure

    TOMEX: A Comparison of Lidar and Sounding Rocket Chemical Tracer

    Get PDF
    On October 26, 2000, a Black Brant V sounding rocket carrying a chemical tracer release was launched from the rocket range at White Sands, New Mexico, as part of the Turbulent Oxygen Mixing Experiment (TOMEX). The releases occurred approximately 150 km from the location of the Starfire Optical Range where the University of Illinois sodium lidar was operated to measure winds and temperatures in the mesosphere and lower thermosphere. The geometry for the experiment was such that the lidar beam was able to intersect the release point for the chemical tracer trail on the upleg part of the flight near an altitude of 95 km. In all, a total of five lidar beam directions were used to sample the region from approximately 85 to 105-km altitude in the vicinity of the releases. Combining the lidar Doppler velocity data from the various beam directions made it possible to produce profiles of vector horizontal winds that could be compared directly with the winds obtained from the triangulation of the chemical tracer trails

    Constructing Fresnel reflection coefficients by ruler and compass

    Get PDF
    A simple and intuitive geometical method to analyze Fresnel formulas is presented. It applies to transparent media and is valid for perpendicular and parallel polarizations. The approach gives a graphical characterization particularly simple of the critical and Brewster angles. It also provides an interpretation of the relation between the reflection coefficients for both basic polarizations as a symmetry in the plane
    corecore